Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 170(3): 534-547.e23, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753428

RESUMO

Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.


Assuntos
Reparo de Erro de Pareamento de DNA , Mutação , Neoplasias/genética , Desaminases APOBEC , Citidina Desaminase , Citosina Desaminase/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Melanoma/genética , Mutagênese , Fumar/efeitos adversos , Raios Ultravioleta/efeitos adversos
2.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36243009

RESUMO

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Assuntos
Distrofias Hereditárias da Córnea , Tomografia de Coerência Óptica , Adulto , Animais , Humanos , Linhagem , Retina/metabolismo , Xenopus laevis/genética
3.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414044

RESUMO

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Assuntos
Splicing de RNA , Inibidor da Tripsina Pancreática de Kazal , Humanos , Inibidor da Tripsina Pancreática de Kazal/genética , Estudos Retrospectivos , Splicing de RNA/genética , Éxons/genética , Sequência de Bases , Processamento Alternativo/genética
4.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902506

RESUMO

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Assuntos
Mutação , Neoplasias , Humanos , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico/genética , Genoma Humano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica
5.
Proc Natl Acad Sci U S A ; 119(49): e2214935119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442094

RESUMO

The 53BP1-RIF1 pathway restricts the resection of DNA double-strand breaks (DSBs) and promotes blunt end-ligation by non-homologous end joining (NHEJ) repair. The Shieldin complex is a downstream effector of the 53BP1-RIF1 pathway. Here, we identify a component of this pathway, CCAR2/DBC1, which is also required for restriction of DNA end-resection. CCAR2 co-immunoprecipitates with the Shieldin complex, and knockout of CCAR2 in a BRCA1-deficient cell line results in elevated DSB end-resection, RAD51 loading, and PARP inhibitor (PARPi) resistance. Knockout of CCAR2 is epistatic with knockout of other Shieldin proteins. The S1-like RNA-binding domain of CCAR2 is required for its interaction with the Shieldin complex and for suppression of DSB end-resection. CCAR2 functions downstream of the Shieldin complex, and CCAR2 knockout cells have delayed resolution of Shieldin complex foci. Forkhead-associated (FHA)-dependent targeting of CCAR2 to DSB sites re-sensitized BRCA1-/-SHLD2-/- cells to PARPi. Taken together, CCAR2 is a functional component of the 53BP1-RIF1 pathway, promotes the refill of resected DSBs, and suppresses homologous recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , DNA
6.
J Infect Dis ; 229(2): 403-412, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37486790

RESUMO

BACKGROUND: Rhinovirus (RV) infections can progress from the upper (URT) to lower (LRT) respiratory tract in immunocompromised individuals, causing high rates of fatal pneumonia. Little is known about how RV evolves within hosts during infection. METHODS: We sequenced RV complete genomes from 12 hematopoietic cell transplant patients with infection for up to 190 days from both URT (nasal wash, NW) and LRT (bronchoalveolar lavage, BAL). Metagenomic and amplicon next-generation sequencing were used to track the emergence and evolution of intrahost single nucleotide variants (iSNVs). RESULTS: Identical RV intrahost populations in matched NW and BAL specimens indicated no genetic adaptation is required for RV to progress from URT to LRT. Coding iSNVs were 2.3-fold more prevalent in capsid over nonstructural genes. iSNVs modeled were significantly more likely to be found in capsid surface residues, but were not preferentially located in known RV-neutralizing antibody epitopes. Newly emergent, genotype-matched iSNV haplotypes from immunocompromised individuals in 2008-2010 could be detected in Seattle-area community RV sequences in 2020-2021. CONCLUSIONS: RV infections in immunocompromised hosts can progress from URT to LRT with no specific evolutionary requirement. Capsid proteins carry the highest variability and emergent mutations can be detected in other, including future, RV sequences.


Assuntos
Infecções por Enterovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Proteínas do Capsídeo/genética , Capsídeo , Rhinovirus/genética , Mutação
7.
J Infect Dis ; 229(6): 1711-1721, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38149984

RESUMO

BACKGROUND: Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS: We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS: In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS: In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , China , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Mutação , Substituição de Aminoácidos , Variação Genética , Masculino , Feminino , Infecções Irruptivas
8.
Int J Cancer ; 155(4): 683-696, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613405

RESUMO

Chimeric RNAs, which can arise from gene recombination at the DNA level or non-canonical splicing events at the RNA level, have been identified as important roles in human tumors. Dysregulated gene expression caused by somatic mutations and altered splicing patterns of oncogenes or tumor suppressor genes can contribute to the development of tumors. Therefore, investigating the formation mechanism of chimeric RNAs via somatic mutations is critical for understanding tumor pathogenesis. This project is the first to propose studying the association between somatic single nucleotide variants and chimeric RNAs, identifying around 2900 somatic SNVs affecting chimeric RNAs in pan-cancer level. The somatic SNVs on chimeric RNAs were commonly observed in various types of tumor tissues, providing a valuable resource for future study. Additionally, these SNVs show distinct tumor specificity, and those with high frequency had a significant impact on the survival time of patients with tumors. Further research revealed that somatic SNVs associated with chimeric RNA (chiR-SNVs) were typically found within 10 nt of the junction site of chimeric RNAs and had a particularly significant effect on chimeric RNAs from different chromosomes. The enrichment analysis revealed that chiR-SNVs were significantly overrepresented in oncogenes and genes related to RNA binding proteins involved in RNA splicing, which could imply that chiR-SNVs may disrupt the process of RNA splicing and induce the occurrence of chimeric RNAs. This study sheds light on the potential molecular interaction mechanism between somatic SNVs and chimeric RNAs, which opens up a new avenue for researching disease pathway and tumorigenesis development.


Assuntos
Mutação , Neoplasias , Splicing de RNA , Humanos , Neoplasias/genética , Splicing de RNA/genética , Polimorfismo de Nucleotídeo Único , Oncogenes/genética , RNA/genética
9.
J Med Virol ; 96(2): e29404, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293834

RESUMO

Pre-existing coronary artery disease (CAD), and thrombotic, inflammatory, or virus infectivity response phenomena have been associated with COVID-19 disease severity. However, the association of candidate single nucleotide variants (SNVs) related to mechanisms of COVID-19 complications has been seldom analysed. Our aim was to test and validate the effect of candidate SNVs on COVID-19 severity. CARGENCORS (CARdiovascular GENetic risk score for Risk Stratification of patients positive for SARS-CoV-2 [COVID-19] virus) is an age- and sex-matched case-control study with 818 COVID-19 cases hospitalized with hypoxemia, and 1636 controls with COVID-19 treated at home. The association between severity and SNVs related to CAD (n = 32), inflammation (n = 19), thrombosis (n = 14), virus infectivity (n = 11), and two published to be related to COVID-19 severity was tested with adjusted logistic regression models. Two external independent cohorts were used for meta-analysis (SCOURGE and UK Biobank). After adjustment for potential confounders, 14 new SNVs were associated with COVID-19 severity in the CARGENCORS Study. These SNVs were related to CAD (n = 10), thrombosis (n = 2), and inflammation (n = 2). We also confirmed eight SNVs previously related to severe COVID-19 and virus infectivity. The meta-analysis showed five SNVs associated with severe COVID-19 in adjusted analyses (rs11385942, rs1561198, rs6632704, rs6629110, and rs12329760). We identified 14 novel SNVs and confirmed eight previously related to COVID-19 severity in the CARGENCORS data. In the meta-analysis, five SNVs were significantly associated to COVID-19 severity, one of them previously related to CAD.


Assuntos
COVID-19 , Doença da Artéria Coronariana , Trombose , Humanos , Estudos de Casos e Controles , SARS-CoV-2/genética , Inflamação
10.
Dev Growth Differ ; 66(2): 172-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243758

RESUMO

Single nucleotide variants (SNVs), including single nucleotide polymorphisms, are often associated with morphological and/or physiological abnormalities in various organisms. Targeted genomic DNA can be amplified and directly sequenced to detect these mutations, but this method is relatively time consuming and expensive. We recently established the heteroduplex mobility assay to detect genetic mutations as an easy, low-cost method in genome editing, but detecting such small genetic differences remains difficult. Here, we developed a new, simple method to detect single nucleotide changes in the zebrafish genome by polymerase chain reaction (PCR) and electrophoresis. We first designed a specific single stranded DNA with four tandem guanine nucleotides inserted beside the mutation site, called guanine-inserted primer (GIP). When reannealing, hybridized complexes of GIP and PCR amplicons with or without 1-bp-mutated alleles form different bulge structures, presumably leading to different mobilities on a polyacrylamide gel. This GIP-interacting mobility assay is easy to use; therefore, it could contribute to the detection of SNVs in any organism.


Assuntos
DNA , Peixe-Zebra , Animais , Peixe-Zebra/genética , DNA/genética , Mutação , Nucleotídeos , Genômica
11.
Transfusion ; 64(5): 920-928, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634174

RESUMO

BACKGROUND: For patients with weak or discrepant RhD RBC phenotypes, RHD genotyping is employed to determine need for RhD-negative management. However, many RHD variants are type D-negative or D-positive. Serological recognition rates (RRs) of weak and partial RHD variants are poorly characterized. STUDY DESIGN AND METHODS: Four US studies employing RHD genotyping for weak or discrepant RhD phenotypes provided data for race/ethnicity-specific serological recognition. Three studies used microplate, and 1 used gel and tube; 2 had anti-D data. We obtained White and Hispanic/Latino allele frequencies (AFs) of weak D types 1, 2, and 3 single-nucleotide variants (SNVs) from the Genome Aggregation Database (gnomAD, v4.0.0) and devised Hardy-Weinberg-based formulas to correct for gnomAD's overcount of hemizygous RHD SNVs as homozygous. We compiled common partial RHD AF from genotyped cohorts of US Black or sickle cell disease subjects. From variant AF, we calculated hemizygous-plus-homozygous genetic prevalences. Serological prevalence: genetic prevalence ratios yielded serological RRs. RESULTS: Overall RRs of weak D types 1-3 were 17% (95% confidence interval 12%-24%) in Whites and 12% (5%-27%) in Hispanics/Latinos. For eight partial RHD variants in Blacks, overall RR was 11% (8%-14%). However, DAR RR was 80% (38%-156%). Compared to microplate, gel-tube recognition was higher for type 2 and DAU5 and lower for type 4.0. Anti-D was present in 6% of recognized partial RHD cases, but only in 0.7% of estimated total genetic cases. DISCUSSION: Based on AF, >80% of patients with weak or partial RHD variants were unrecognized serologically. Although overall anti-D rates were low, better detection of partial RHD variants is desirable.


Assuntos
Frequência do Gene , Sistema do Grupo Sanguíneo Rh-Hr , Feminino , Humanos , Masculino , Anemia Falciforme/genética , Anemia Falciforme/sangue , Genótipo , Hispânico ou Latino/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Sistema do Grupo Sanguíneo Rh-Hr/genética , Brancos/genética , Negro ou Afro-Americano/genética
12.
Int J Legal Med ; 138(3): 767-779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38197923

RESUMO

Monozygotic (MZ) twins are theoretically genetically identical. Although they are revealed to accumulate mutations after the zygote splits, discriminating between twin genomes remains a formidable challenge in the field of forensic genetics. Single-nucleotide variants (SNVs) are responsible for a substantial portion of genetic variation, thus potentially serving as promising biomarkers for the identification of MZ twins. In this study, we sequenced the whole genome of a pair of female MZ twins when they were 27 and 33 years old to approximately 30 × coverage using peripheral blood on an Illumina NovaSeq 6000 Sequencing System. Potentially discordant SNVs supported by whole-genome sequencing were validated extensively by amplicon-based targeted deep sequencing and Sanger sequencing. In total, we found nine bona fide post-twinning SNVs, all of which were identified in the younger genomes and found in the older genomes. None of the SNVs occurred within coding exons, three of which were observed in introns, supported by whole-exome sequencing results. A double-blind test was employed, and the reliability of MZ twin discrimination by discordant SNVs was endorsed. All SNVs were successfully detected when input DNA amounts decreased to 0.25 ng, and reliable detection was limited to seven SNVs below 0.075 ng input. This comprehensive analysis confirms that SNVs could serve as cost-effective biomarkers for MZ twin discrimination.


Assuntos
Nucleotídeos , Gêmeos Monozigóticos , Adulto , Feminino , Humanos , Biomarcadores , Mutação , Reprodutibilidade dos Testes , Gêmeos Monozigóticos/genética
13.
Environ Sci Technol ; 58(1): 580-590, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38114447

RESUMO

Ammonia release from proteinaceous feedstocks represents the main inhibitor of the anaerobic digestion (AD) process, which can result in a decreased biomethane yield or even complete failure of the process. The present study focused on the adaptation of mesophilic AD communities to a stepwise increase in the concentration of ammonium chloride in synthetic medium with casein used as the carbon source. An adaptation process occurring over more than 20 months allowed batch reactors to reach up to 20 g of NH4+ N/L without collapsing in acidification nor ceasing methane production. To decipher the microbial dynamics occurring during the adaptation and determine the genes mostly exposed to selective pressure, a combination of biochemical and metagenomics analyses was performed, reconstructing the strains of key species and tracking them over time. Subsequently, the adaptive metabolic mechanisms were delineated by following the single nucleotide variants (SNVs) characterizing the strains and prioritizing the associated genes according to their function. An in-depth exploration of the archaeon Methanoculleus bourgensis vb3066 and the putative syntrophic acetate-oxidizing bacteria Acetomicrobium sp. ma133 identified positively selected SNVs on genes involved in stress adaptation. The intraspecies diversity with multiple coexisting strains in a temporal succession pattern allows us to detect the presence of an additional level of diversity within the microbial community beyond the species level.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Metagenômica , Amônia/metabolismo , Compostos de Amônio/metabolismo , Metano
14.
Cardiol Young ; : 1-8, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456293

RESUMO

Studies have shown that genetic factors play an important role in CHD's development. The mutations in GATA4 and CITED2 genes result in the failure of the heart to develop normally, thereby leading to septal defects. The present study investigated the underlying molecular aetiology of patients with cardiac septation defects from Xinjiang. We investigated variants of the GATA4 and CITED2 gene coding regions in 172 patients with cardiac septation defects by sequencing. Healthy controls (n = 200) were included. Three heterozygous variations (p.V380M, p.P394T, and p.P407Q) of the GATA4 gene were identified in three patients. p.V380M was discovered in a patient with atrial septal defect. p.P394T was noted in a patient with atrial septal defect. p.V380M and p.P407Q of the GATA4 gene were detected in one patient with ventricular septal defect. A novel homozygous variation (p. Sl92G) of the CITED2 gene was found in one patient with ventricular septal defect. Other patients and healthy individuals were normal. The limited prevalence of genetic variations observed in individuals with cardiac septal defects from Xinjiang provides evidence in favour of the hypothesis that CHD is a polygenic hereditary disorder. It is plausible that mutations in the GATA4 and CITED2 genes could potentially underlie the occurrence of idiopathic CHD in affected patients.

15.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892425

RESUMO

Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.


Assuntos
Genoma de Planta , Raphanus , Sequenciamento Completo do Genoma , Raphanus/genética , Sequenciamento Completo do Genoma/métodos , Tumores de Planta/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética
16.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999967

RESUMO

Age-related macular degeneration (AMD) is a progressive neurodegenerative condition leading to vision loss and eventual blindness, with exudative AMD posing a heightened risk due to choroidal neovascularization and localized edema. Therapies targeting the VEGF pathway aim to address this mechanism for treatment effectiveness. Our study aimed to evaluate associations between specific genetic variants (RAD51B rs8017304, rs2588809; TRIB1 rs6987702, rs4351379; COL8A1 rs13095226; COL10A1 rs1064583; IL-9 rs1859430, rs2069870, rs11741137, rs2069885, rs2069884; IL-10 rs1800871, rs1800872, rs1800896; VEGFA rs1570360, rs699947, rs3025033, rs2146323) and the response to anti-VEGF treatment for exudative AMD. We enrolled 119 patients with exudative AMD categorized as responders or non-responders based on their response to anti-VEGF treatment. Statistical analysis revealed that RAD51B rs8017304 heterozygous and homozygous minor allele carriers had increased CMT before treatment compared to wild-type genotype carriers (p = 0.004). Additionally, TRIB1 rs4351379 heterozygous and homozygous minor allele carriers exhibited a greater decrease in central macular thickness (CMT) after 6 months of treatment than wild-type genotype carriers (p = 0.030). IL-9 rs1859430, rs2069870, and rs2069884 heterozygous and homozygous minor allele carriers had worse BCVA before treatment than wild-type genotype carriers (p = 0.018, p = 0.012, p = 0.041, respectively). Conversely, IL-9 rs2069885 heterozygous and homozygous minor allele carriers showed greater improvement in BCVA after 6 months compared to wild-type genotype carriers (p = 0.032). Furthermore, VEGFA rs699947 heterozygous and homozygous minor allele carriers had better BCVA before treatment and after 3 and 6 months of treatment than wild-type genotype carriers (p = 0.003, p = 0.022, respectively), with these carriers also exhibiting higher CMT after 6 months of anti-VEGF treatment (p = 0.032). Not all results remained statistically significant under this stringent correction for multiple comparisons. The comparisons of the serum concentrations of IL-10, VEGF-A, and VEGF-R2/KDR between non-responders and responders did not yield statistically significant differences. Our study identified significant associations between genetic variants, including RAD51B rs8017304, TRIB1 rs4351379, IL-9 rs1859430, rs2069870, rs2069884, rs2069885, and VEGFA rs699947, and parameters related to the efficacy of exudative AMD treatment, such as BCVA and CMT.


Assuntos
Colágeno Tipo X , Interleucina-10 , Interleucina-9 , Peptídeos e Proteínas de Sinalização Intracelular , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Masculino , Feminino , Idoso , Interleucina-10/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Interleucina-9/genética , Colágeno Tipo X/genética , Resultado do Tratamento , Degeneração Macular/genética , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/genética , Pessoa de Meia-Idade , Genótipo , Colágeno Tipo VIII
17.
Medicina (Kaunas) ; 60(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929591

RESUMO

Keratoconus is a bilateral ocular condition characterized by irregularities and the thinning of the cornea. Decreased central corneal thickness is a hallmark of the condition, and numerous genes have played a role in altering corneal thickness and the subsequent development of keratoconus. Variants in the structural and regulatory genes of the extracellular matrix have been highly associated with keratoconus, as well as with pectus excavatum, a chest wall deformity commonly seen in connective tissue disorders. This report describes a patient with a c.1720-11T>A intronic variant in the collagen-encoding gene, COL5A1, who was diagnosed with early-onset keratoconus and demonstrated a significant pectus excavatum. This report associates a COL5A1 variant with these seemingly unrelated phenotypic associations, further advancing the literature on the topic.


Assuntos
Colágeno Tipo V , Tórax em Funil , Ceratocone , Humanos , Ceratocone/genética , Ceratocone/diagnóstico , Colágeno Tipo V/genética , Tórax em Funil/genética , Tórax em Funil/complicações , Masculino , Matriz Extracelular , Polimorfismo de Nucleotídeo Único , Feminino , Adulto
18.
BMC Bioinformatics ; 24(1): 287, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464277

RESUMO

BACKGROUND: Next-generation sequencing technologies yield large numbers of genetic alterations, of which a subset are missense variants that alter an amino acid in the protein product. These variants can have a potentially destabilizing effect leading to an increased risk of misfolding and aggregation. Multiple software tools exist to predict the effect of single-nucleotide variants on proteins, however, a pipeline integrating these tools while starting from an NGS data output list of variants is lacking. RESULTS: The previous version SNPeffect 4.0 (De Baets in Nucleic Acids Res 40(D1):D935-D939, 2011) provided an online database containing pre-calculated variant effects and low-throughput custom variant analysis. Here, we built an automated and parallelized pipeline that analyzes the impact of missense variants on the aggregation propensity and structural stability of proteins starting from the Variant Call Format as input. The pipeline incorporates the AlphaFold Protein Structure Database to achieve high coverage for structural stability analyses using the FoldX force field. The effect on aggregation-propensity is analyzed using the established predictors TANGO and WALTZ. The pipeline focuses solely on the human proteome and can be used to analyze proteome stability/damage in a given sample based on sequencing results. CONCLUSION: We provide a bioinformatics pipeline that allows structural phenotyping from sequencing data using established stability and aggregation predictors including FoldX, TANGO, and WALTZ; and structural proteome coverage provided by the AlphaFold database. The pipeline and installation guide are freely available for academic users on https://github.com/vibbits/snpeffect and requires a computer cluster.


Assuntos
Proteoma , Software , Humanos , Mutação , Proteínas Mutantes , Bases de Dados de Proteínas , Sequenciamento de Nucleotídeos em Larga Escala
19.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35580068

RESUMO

Mutational processes in tumors create distinctive patterns of mutations, composed of neutral "passenger" mutations and oncogenic drivers that have quantifiable effects on the proliferation and survival of cancer cell lineages. Increases in proliferation and survival are mediated by natural selection, which can be quantified by comparing the frequency at which we detect substitutions to the frequency at which we expect to detect substitutions assuming neutrality. Most of the variants detectable with whole-exome sequencing in tumors are neutral or nearly neutral in effect, and thus the processes generating the majority of mutations may not be the primary sources of the tumorigenic mutations. Across 24 cancer types, we identify the contributions of mutational processes to each oncogenic variant and quantify the degree to which each process contributes to tumorigenesis. We demonstrate that the origination of variants driving melanomas and lung cancers is predominantly attributable to the preventable, exogenous mutational processes associated with ultraviolet light and tobacco exposure, respectively, whereas the origination of selected variants in gliomas and prostate adenocarcinomas is largely attributable to endogenous processes associated with aging. Preventable mutations associated with pathogen exposure and apolipoprotein B mRNA-editing enzyme activity account for a large proportion of the cancer effect within head-and-neck, bladder, cervical, and breast cancers. These attributions complement epidemiological approaches-revealing the burden of cancer driven by single-nucleotide variants caused by either endogenous or exogenous, nonpreventable, or preventable processes, and crucially inform public health strategies.


Assuntos
Neoplasias , Oncogenes , Carcinogênese/genética , Humanos , Masculino , Mutação , Neoplasias/genética , Sequenciamento do Exoma
20.
Mol Ecol ; 32(11): 2850-2868, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847615

RESUMO

The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.


Assuntos
Evolução Biológica , Mudança Climática , Filogenia , Florestas , Ásia Oriental , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA