Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 513: 50-62, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38492873

RESUMO

The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.


Assuntos
Orelha , Canais de Ânion Dependentes de Voltagem , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Orelha/embriologia , Mutação/genética , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
2.
Indian J Microbiol ; 62(1): 96-102, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068609

RESUMO

Tannin acyl hydrolase referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannin to release gallic acid. The tannase TanBLp which cloned from Lactobacillus plantarum ATCC14917T has high activity in the pH range (7.0-9.0) at 40 °C, it would be detrimental to the utilization at acidic environment. The catalytic sites and stability of TanBLp were analyzed using bioinformatics and site-specific mutagenesis. The results reiterated that the amino acid residues Ala164, Lys343, Glu357, Asp421 and His451 had played an important role in maintaining the activity. The optimum pH of mutants V75A, G77A, N94A, A164S and F243A were shifted from 8.0 to 6.0, and mutant V75A has the highest pH stability and activity at acidic conditions than other mutants, which was more suitable for industrial application to manufacture gallic acid. This study was of great significance to promote the industrialization and efficient utilization of tannase TanBLp.

3.
Mol Biol (Mosk) ; 54(6): 980-989, 2020.
Artigo em Russo | MEDLINE | ID: mdl-33276361

RESUMO

The continued circulation of influenza A virus subtype H5 may cause the emergence of new potential pandemic virus variants, which can be transmitted from person to person. The occurrence of such variants is mainly related to mutations in hemagglutinin (HA). Previously we discovered mutations in H5N1 influenza virus hemagglutinin, which contributes to virus immune evasion. The purpose of this work was to study the role of these mutations in changing other, non-antigenic properties of the virus and the possibility of their maintenance in the viral population. Mutations were introduced into the HA gene of a recombinant H5N1 influenza A virus (VNH5N1-PR8/CDC-RG) using site-specific mutagenesis. The "variant" viruses were investigated and compared with respect to replication kinetics in chicken embryos, thermostability, reproductive activity at different temperatures (33, 37 and 40°C), and virulence for mice. Amino acid substitutions I155T, K156Q, K156E+V138A, N186K led to a decrease in thermal stability, replication activity of the mutant viruses in chicken embryos, and virulence for mice, although these effects differed between the variants. The K156Q and N186K mutations reduced viral reproduction at elevated temperature (40°C). The analysis of the frequency of these mutations in natural isolates of H5N1 influenza viruses indicated that the K156E/Q and N186K mutations have little chance to gain a foothold during evolution, in contrast to the I155T mutation, which is the most responsible for antigenic drift. The A138V and N186K mutations seem to be adaptive in mammalian viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1 , Virulência/genética , Animais , Embrião de Galinha , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/fisiologia , Camundongos , Mutação , Infecções por Orthomyxoviridae/virologia , Replicação Viral
4.
Arch Biochem Biophys ; 665: 57-68, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836054

RESUMO

The Toll cascade plays important functions in innate immunity against infectious pathogens in animals. Toll cascade as an ancient immune defender were conserved among different species. The activation of the TLR pathway between different species often involves different interacting proteins. The core members of this pathway have been well established in a wide range of organisms, including the marine invertebrate sea cucumber. However, these proteins do not function as single isolated entities but are engaged in a dynamic physical network with other proteins in the biomolecular context of a cell. To fill the knowledge gap in this context, two novel members of major yolk protein (MYP) and heat shock cognate protein 70 (HSC70) were identified as myeloid differentiation factor 88 (MyD88) interacting proteins by GST pull-down and mass spectrometry assays in Apostichopus japonicus. Their interactions were further confirmed by a co-immunoprecipitation analysis. Confocal microscopy analysis revealed that these three proteins were co-localized in the cytoplasm. A functional experiment indicated that each protein alone could suppress NF-κB translocated in the nucleus in cultured coelomocytes via a siRNA interference assay, suggesting that the three proteins functioned as a complex. To better address these interactions, we used the ZDOCK docking platform to mock the structure of the MyD88-HSC70-MYP complex. The death domain of MyD88 bound to HSC70 and MYP in separate spatial positions. The extent of interaction between MyD88 and HSC70 were K574, D591, E592 and E619 in HSC70 and E75, R76, K197 and R203 in MyD88. In the MYP-MyD88 model, K260, K452, K467 and E839 of MYP and D29, R40 and E62 of MyD88 were considered essential sites. Site-specific mutagenesis of these sites showed that most residues were key sites for their interaction with distinctly reduced binding constants relative to those of their native counterparts by biolayer interferometry assays, in which only K197 and R203 of MyD88 mutants displayed no effect on these interactions. Our results provide the first evidence of the roles of HSC70 and MYP in immune regulation via interacting with MyD88 and activating the TLR pathway in Apostichopus japonicus.


Assuntos
Proteínas do Ovo/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Stichopus/metabolismo , Receptores Toll-Like/metabolismo , Animais , Simulação de Acoplamento Molecular , Ligação Proteica
5.
J Enzyme Inhib Med Chem ; 34(1): 1506-1510, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31431090

RESUMO

Carbonic anhydrases (CAs) are ubiquitous metallo-enzymes that catalyse the reversible hydration of carbon dioxide to bicarbonate and proton. In humans there are 15 isoforms among which only 12 are catalytically active. Since active human (h) CAs show different efficiency, the understanding of the molecular determinants affecting it is a matter of debate. Here we investigated, by a site-specific mutagenesis approach, residues modulating the catalytic features of one of the least investigated cytosolic isoform, i.e. hCA XIII. Results showed that residues assisting the formation of an ordered solvent network within the catalytic site as well as those forming a histidine cluster on the protein surface are important to guarantee an efficient proton transfer.


Assuntos
Biocatálise , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Mutagênese Sítio-Dirigida , Anidrases Carbônicas/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
6.
Biotechnol Lett ; 40(8): 1227-1235, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29869760

RESUMO

OBJECTIVES: L-isoleucine dioxygenase (IDO) specifically transforms L-isoleucine (Ile) to 4-hydroxyisoleucine (4-HIL), and 4-HIL is a promising drug for diabetes. To enhance the activity and catalytic efficiency of IDO, we used directed evolution and site-specific mutagenesis. RESULTS: The IDO gene (ido) derived from Bacillus weihenstephanensis was cloned and expressed in Escherichia coli. Directed evolution using error prone (EP)-PCR and site-specific mutagenesis were conducted. Two improved mutants were obtained after one round of EP-PCR, with IdoN126H exhibiting a 2.8-fold increase in activity. Two improved mutants were obtained through site-specific mutagenesis, with IdoT130K showing a 170% increase in activity. Although the activity of the combined mutant IdoN126H/T130K (0.95 ± 0.08 U/mg) was slightly higher than that of the wild-type Ido, its catalytic efficiency was 2.4-fold and 3.0-fold higher than Ido with Ile and α-ketoglutaric acid as substrates. After biotransformation of Ile by E. coli BL21(DE3) expressing IdoN126H/T130K and Ido, 66.50 ± 0.99 mM and 26.09 ± 1.85 mM 4-HIL was synthesized, respectively, in 24 h. CONCLUSION: IdoN126H/T130K had a higher enzyme activity and catalytic efficiency and can therefore be used as a more suitable candidate for 4-HIL production.


Assuntos
Bacillus , Dioxigenases , Evolução Molecular Direcionada/métodos , Isoleucina , Mutagênese Sítio-Dirigida/métodos , Bacillus/enzimologia , Bacillus/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Isoleucina/análogos & derivados , Isoleucina/análise , Isoleucina/metabolismo , Temperatura
7.
Mar Drugs ; 16(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486373

RESUMO

The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) with anticancer activity represents а novel lectin family with ß-trefoil fold. Earlier, the crystal structures of CGL complexes with globotriose, galactose and galactosamine, and mutagenesis studies have revealed that the lectin contained three carbohydrate-binding sites. The ability of CGL to recognize globotriose (Gb3) on the surface of breast cancer cells and bind mucin-type glycoproteins, which are often associated with oncogenic transformation, makes this compound to be perspective as a biosensor for cancer diagnostics. In this study, we describe results on in silico analysis of binding mechanisms of CGL to ligands (galactose, globotriose and mucin) and evaluate the individual contribution of the amino acid residues from carbohydrate-binding sites to CGL activity by site-directed mutagenesis. The alanine substitutions of His37, His129, Glu75, Asp127, His85, Asn27 and Asn119 affect the CGL mucin-binding activity, indicating their importance in the manifestation of lectin activity. It has been found that CGL affinity to ligands depends on their structure, which is determined by the number of hydrogen bonds in the CGL-ligand complexes. The obtained results should be helpful for understanding molecular machinery of CGL functioning and designing a synthetic analog of CGL with enhanced carbohydrate-binding properties.


Assuntos
Organismos Aquáticos/metabolismo , Lectinas/metabolismo , Mutagênese Sítio-Dirigida , Mytilidae/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Sequência de Aminoácidos/genética , Animais , Organismos Aquáticos/genética , Sítios de Ligação/genética , Galactose/química , Galactose/metabolismo , Lectinas/química , Lectinas/genética , Ligantes , Simulação de Acoplamento Molecular , Mucinas/química , Mucinas/metabolismo , Mytilidae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Trissacarídeos/química , Trissacarídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(48): 14823-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627237

RESUMO

Factor H binding protein (FHbp) is part of two vaccines recently licensed for prevention of sepsis and meningitis caused by serogroup B meningococci. FHbp is classified in three phylogenic variant groups that have limited antigenic cross-reactivity, and FHbp variants in one of the groups have low thermal stability. In the present study, we replaced two amino acid residues, R130 and D133, in a stable FHbp variant with their counterparts (L and G) from a less stable variant. The single and double mutants decreased thermal stability of the amino- (N-) terminal domain compared with the wild-type protein as measured by scanning calorimetry. We introduced the converse substitutions, L130R and G133D, in a less stable wild-type FHbp variant, which increased the transition midpoint (Tm) for the N-terminal domain by 8 and 12 °C; together the substitutions increased the Tm by 21 °C. We determined the crystal structure of the double mutant FHbp to 1.6 Å resolution, which showed that R130 and D133 mediated multiple electrostatic interactions. Monoclonal antibodies specific for FHbp epitopes in the N-terminal domain had higher binding affinity for the recombinant double mutant by surface plasmon resonance and to the mutant expressed on meningococci by flow cytometry. The double mutant also had decreased binding of human complement Factor H, which in previous studies increased the protective antibody responses. The stabilized mutant FHbp thus has the potential to stabilize protective epitopes and increase the protective antibody responses to recombinant FHbp vaccines or native outer membrane vesicle vaccines with overexpressed FHbp.


Assuntos
Substituição de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Vacinas Meningocócicas/química , Neisseria meningitidis Sorogrupo B , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Temperatura Alta , Humanos , Vacinas Meningocócicas/genética , Estabilidade Proteica
9.
Biochim Biophys Acta ; 1861(2): 108-118, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603902

RESUMO

The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.


Assuntos
Substituição de Aminoácidos , Aspergillus niger/metabolismo , Proteínas Fúngicas/química , Oxirredutases Intramoleculares/química , Ácidos Linoleicos/metabolismo , Sequência de Aminoácidos , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus niger/genética , Biocatálise , Sequência Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Expressão Gênica , Peróxido de Hidrogênio , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo
10.
Proc Natl Acad Sci U S A ; 111(32): E3252-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071207

RESUMO

Viral lethal mutagenesis is a strategy whereby the innate immune system or mutagenic pool nucleotides increase the error rate of viral replication above the error catastrophe limit. Lethal mutagenesis has been proposed as a mechanism for several antiviral compounds, including the drug candidate 5-aza-5,6-dihydro-2'-deoxycytidine (KP1212), which causes A-to-G and G-to-A mutations in the HIV genome, both in tissue culture and in HIV positive patients undergoing KP1212 monotherapy. This work explored the molecular mechanism(s) underlying the mutagenicity of KP1212, and specifically whether tautomerism, a previously proposed hypothesis, could explain the biological consequences of this nucleoside analog. Establishing tautomerism of nucleic acid bases under physiological conditions has been challenging because of the lack of sensitive methods. This study investigated tautomerism using an array of spectroscopic, theoretical, and chemical biology approaches. Variable temperature NMR and 2D infrared spectroscopic methods demonstrated that KP1212 existed as a broad ensemble of interconverting tautomers, among which enolic forms dominated. The mutagenic properties of KP1212 were determined empirically by in vitro and in vivo replication of a single-stranded vector containing a single KP1212. It was found that KP1212 paired with both A (10%) and G (90%), which is in accord with clinical observations. Moreover, this mutation frequency is sufficient for pushing a viral population over its error catastrophe limit, as observed before in cell culture studies. Finally, a model is proposed that correlates the mutagenicity of KP1212 with its tautomeric distribution in solution.


Assuntos
Fármacos Anti-HIV/farmacologia , Azacitidina/análogos & derivados , Desoxicitidina/análogos & derivados , HIV/efeitos dos fármacos , HIV/genética , Mutagênicos/farmacologia , Fármacos Anti-HIV/química , Azacitidina/química , Azacitidina/farmacologia , Bacteriófago M13/efeitos dos fármacos , Bacteriófago M13/genética , Bacteriófago M13/fisiologia , Pareamento de Bases , Desoxicitidina/química , Desoxicitidina/farmacologia , Genoma Viral/efeitos dos fármacos , HIV/fisiologia , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Mutagênicos/química , Espectrofotometria Infravermelho , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
11.
Biochim Biophys Acta ; 1854(12): 1906-1913, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26275805

RESUMO

2-Hydroxybiphenyl 3-monooxygenase (HbpA) is an FAD dependent monooxygenase which catalyzes the ortho-hydroxylation of a broad range of 2-substituted phenols in the presence of NADH and molecular oxygen. We have determined the structure of HbpA from the soil bacterium Pseudomonas azelaica HBP1 with bound 2-hydroxybiphenyl, as well as several variants, at a resolution of 2.3-2.5Å to investigate structure function correlations of the enzyme. An observed hydrogen bond between 2-hydroxybiphenyl and His48 in the active site confirmed the previously suggested role of this residue in substrate deprotonation. The entrance to the active site was confirmed by generating variant G255F which exhibited only 7% of the wild-type's specific activity of product formation, suggesting inhibition of substrate entrance into the active site by the large aromatic residue. Residue Arg242 is suggested to facilitate FAD movement and reduction as was previously reported in studies on the homologous protein para-hydroxybenzoate hydroxylase. In addition, it is suggested that Trp225, which is located in the active site, facilitates proper substrate entrance into the binding pocket in contrast to aklavinone-11-hydroxylase and para-hydroxybenzoate hydroxylase in which a residue at a similar position is responsible for substrate deprotonation. Structure function correlations described in this work will aid in the design of variants with improved activity and altered selectivity for potential industrial applications.


Assuntos
Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Conformação Proteica , Especificidade por Substrato
12.
Plant Biotechnol J ; 14(2): 510-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26251102

RESUMO

Genome editing with engineered nucleases (GEEN) represents a highly specific and efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes. Addressing ambiguities regarding the regulatory status of genome editing techniques is critical to their application for development of economically useful crop traits. Continued regulatory focus on the process used, rather than the nature of the novel phenotype developed, results in confusion on the part of regulators, product developers, and the public alike and creates uncertainty as of the use of genome engineering tools for crop improvement.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/legislação & jurisprudência , Edição de Genes/métodos , Genoma de Planta , Controle Social Formal , Produtos Agrícolas/economia , Genômica
13.
Mol Biol (Mosk) ; 50(5): 855-862, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27830688

RESUMO

The change in the phenotypic properties resulting from amino acid substitutions in the hemagglutinin (HA) molecule is an important link in the evolutionary process of influenza viruses. It is believed to be one of the mechanisms of the emergence of highly pathogenic strains of influenza A viruses, including subtype H5N1. Using the site-directed mutagenesis, we introduced mutations in the HA gene of the H5N1 subtype of influenza A virus. The obtained virus variants were analyzed and compared using the following parameters: optimal pH of conformational transition (according to the results of the hemolysis test), specificity of receptor binding (using a set of synthetic analogues of cell surface sialooligosaccharides), thermoresistance (heat-dependent reduction of hemagglutinin activity), virulence in mice, and the kinetics of replication in chicken embryos, and reproductive activity at different temperatures (RCT-based). N186I and N186T mutations in the HA protein increased the virulence of the original virus in mice. These mutations accelerated virus replication in the early stages of infection in chicken embryos and increased the level of replication at late stages. In addition, compared to the original virus, the mutant variants replicated more efficiently at lower temperatures. The obtained data clearly prove the effect of amino acid substitutions at the 186 position of HA on phenotypic properties of the H5N1 subtype of influenza A.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/metabolismo , Replicação Viral/genética , Substituição de Aminoácidos , Animais , Embrião de Galinha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Camundongos , Infecções por Orthomyxoviridae/genética
14.
Biochim Biophys Acta ; 1844(6): 1111-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632526

RESUMO

The long loop connecting transmembrane α4 and α5 of the Bacillus thuringiensis Cry4Aa toxin possesses a unique feature with Pro-rich sequence (Pro(193)Pro(194)_Pro(196)) which was shown to be crucial for toxicity. Here, the structural role in the intrinsic stability of the Pro-rich sequence toward toxin activity was investigated. Three Val-substituted mutants (P193V, P194V and P196V) and one Phe-substituted mutant (P193F) were generated and over-expressed in Escherichia coli as inclusions at levels equal to the wild-type. Bioassays demonstrated that all mutants, particularly P193V and P193F whose inclusions were hardly soluble in carbonate buffer (pH9.0), exhibited reduced toxicity, suggesting an essential role in toxin function by the specific cyclic structure of individual Pro residues. Analysis of the 65-kDa Cry4Aa structure from 10-ns molecular dynamics (MD) simulations revealed that the α4-α5 loop is substantially stable as it showed low structural fluctuation with a 1.2-Å RMSF value. When the flexibility of the α4-α5 loop was increased through P193G, P194G and P196G substitutions, decreased toxicity was also observed for all mutants, mostly for the P193G mutant with low alkali-solubility, suggesting a functional importance of loop-rigidity attributed by individual Pro-cyclic side-chains, particularly Pro(193). Further MD simulations revealed that the most critical residue-Pro(193) for which mutations vastly affect toxin solubility and larval toxicity is in close contact with several surrounding residues, thus playing an additional role in the structural arrangement of the Cry4Aa toxin molecule. Altogether, our data signify that the intrinsic stability of the unique Cry4Aa α4-α5 loop structure comprising the Pro-rich sequence plays an important role in toxin activity.


Assuntos
Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular , Prolina/metabolismo , Aedes/microbiologia , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva/microbiologia , Dados de Sequência Molecular , Mutação , Prolina/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 25(18): 3878-81, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235952

RESUMO

The enantiomers of 2-azabicyclo[2.2.1]hept-5-en-3-one (γ-lactam) are key chiral synthons in the synthesis of antiviral drugs such as carbovir and abacavir. (+)-γ-Lactamase can be used as a catalyst in the enzymatic preparation of optically pure (-)-γ-lactam. Here, a (+)-γ-lactamase discovered from Bradyrhizobium japonicum USDA 6 by sequence-structure guided genome mining was cloned, purified and characterized. The enzyme possesses a significant catalytic activity towards γ-lactam. The active site of the (+)-γ-lactamase was studied by homologous modeling and molecular docking, and the accuracy of the prediction was confirmed by site-specific mutagenesis. The (+)-γ-lactamase reveals the great practical potential as an enzymatic method for the efficient production of carbocyclic nucleosides of pharmaceutical interest.


Assuntos
Amidoidrolases/metabolismo , Biocatálise , Didesoxinucleosídeos/metabolismo , Amidoidrolases/química , Didesoxinucleosídeos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
16.
Fish Shellfish Immunol ; 47(1): 565-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439416

RESUMO

The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) was shown to represent a novel family of lectins and to be characterized by three amino acid tandem repeats with high (up to 73%) sequence similarities to each other. We have used homology modeling approach to predict CGL sugar-binding sites. In silico analysis of CGL-GalNAc complexes showed that CGL contained three binding sites, each of which included conserved HPY(K)G motif. In silico substitutions of histidine, proline and glycine residues by alanine in the HPY(K)G motifs of the Sites 1-3 was shown to lead to loss of hydrogen bonds between His and GalNAc and to the increasing the calculated CGL-GalNAc binding energies. We have obtained recombinant CGL and used site-specific mutagenesis to experimentally examine the role of HPK(Y)G motifs in hemagglutinating and carbohydrate binding activities of CGL. Substitutions of histidine, proline and glycine residues by alanine in the HPYG motif of Site 1 and Site 2 was found to led to complete loss of CGL hemagglutinating and mucin-binding activities. The same mutations in HPKG motif of the Site 3 resulted in decreasing the mucin-binding activity in 6-folds in comparison with the wild type lectin. The mutagenesis and in silico analysis indicates the importance of the all three HPY(K)G motifs in the carbohydrate-binding and hemagglutinating activities of CGL.


Assuntos
Lectinas/genética , Mytilidae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Lectinas/química , Lectinas/metabolismo , Mutagênese Sítio-Dirigida , Mytilidae/metabolismo , Alinhamento de Sequência
17.
J Biol Chem ; 288(44): 31670-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24052257

RESUMO

Dextran glucosidase from Streptococcus mutans (SmDG) catalyzes the hydrolysis of an α-1,6-glucosidic linkage at the nonreducing end of isomaltooligosaccharides and dextran. This enzyme has an Asp-194 catalytic nucleophile and two catalytically unrelated Cys residues, Cys-129 and Cys-532. Cys-free SmDG was constructed by replacement with Ser (C129S/C532S (2CS), the activity of which was the same as that of the wild type, SmDG). The nucleophile mutant of 2CS was generated by substitution of Asp-194 with Cys (D194C-2CS). The hydrolytic activity of D194C-2CS was 8.1 × 10(-4) % of 2CS. KI-associated oxidation of D194C-2CS increased the activity up to 0.27% of 2CS, which was 330 times higher than D194C-2CS. Peptide-mapping mass analysis of the oxidized D194C-2CS (Ox-D194C-2CS) revealed that Cys-194 was converted into cysteine sulfinate. Ox-D194C-2CS and 2CS shared the same properties (optimum pH, pI, and substrate specificity), whereas Ox-D194C-2CS had much higher transglucosylation activity than 2CS. This is the first study indicating that a more acidic nucleophile (-SOO(-)) enhances transglycosylation. The introduction of cysteine sulfinate as a catalytic nucleophile could be a novel approach to enhance transglycosylation.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Cisteína/análogos & derivados , Glucosidases/química , Streptococcus mutans/enzimologia , Ácido Aspártico/química , Ácido Aspártico/genética , Proteínas de Bactérias/genética , Catálise , Cisteína/química , Cisteína/genética , Glucosidases/genética , Glicosilação , Mutação de Sentido Incorreto , Streptococcus mutans/genética
18.
Cancer Lett ; 591: 216904, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642608

RESUMO

KRAS plays a crucial role in regulating cell survival and proliferation and is one of the most commonly mutated oncogenes in human cancers. The novel KRASG12D inhibitor, MRTX1133, demonstrates promising antitumor efficacy in vitro and in vivo. However, the development of acquired resistance in treated patients presents a considerable challenge to sustained therapeutic effectiveness. In response to this challenge, we conducted site-specific mutagenesis screening to identify potential secondary mutations that could induce resistance to MRTX1133. We screened a range of KRASG12D variants harboring potential secondary mutations, and 44 representative variants were selected for in-depth validation of the pooled screening outcomes. We identified eight variants (G12D with V9E, V9W, V9Q, G13P, T58Y, R68G, Y96W, and Q99L) that exhibited substantial resistance, with V9W showing notable resistance, and downstream signaling analyses and structural modeling were conducted. We observed that secondary mutations in KRASG12D can lead to acquired resistance to MRTX1133 and BI-2865, a novel pan-KRAS inhibitor, in human cancer cell lines. This evidence is critical for devising new strategies to counteract resistance mechanisms and, ultimately, enhance treatment outcomes in patients with KRASG12D-mutant cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos
19.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399475

RESUMO

Although a lot of effort has been put into creating drugs and combination therapies against chronic hepatitis, no effective treatment has been established. Type-I interferon is a promising therapeutic for chronic hepatitis due to its excellent anti-inflammatory effects through interferon receptors on hepatic macrophages. To develop a type-I IFN equipped with the ability to target hepatic macrophages through the macrophage mannose receptor, the present study designed a mouse type-I interferon-mannosylated albumin fusion protein using site-specific mutagenesis and albumin fusion technology. This fusion protein exhibited the induction of anti-inflammatory molecules, such as IL-10, IL-1Ra, and PD-1, in RAW264.7 cells, or hepatoprotective effects on carbon tetrachloride-induced chronic hepatitis mice. As expected, such biological and hepatoprotective actions were significantly superior to those of human fusion proteins. Furthermore, the repeated administration of mouse fusion protein to carbon tetrachloride-induced chronic hepatitis mice clearly suppressed the area of liver fibrosis and hepatic hydroxyproline contents, not only with a reduction in the levels of inflammatory cytokine (TNF-α) and fibrosis-related genes (TGF-ß, Fibronectin, Snail, and Collagen 1α2), but also with a shift in the hepatic macrophage phenotype from inflammatory to anti-inflammatory. Therefore, type-I interferon-mannosylated albumin fusion protein has the potential as a new therapeutic agent for chronic hepatitis.

20.
J Hazard Mater ; 429: 128304, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35074750

RESUMO

A multilevel index system of organophosphate flame retardant bioremediation effect in an e-waste handling area was established under three bioremediation scenarios (scenario I, plant absorption; scenario II, plant-microbial combined remediation; scenario III, microbial degradation). Directional modification of OPFR substitutes with high selective bioremediation was performed. The virtual amino acid mutation approach was utilised to generate high-efficiency selective absorption/degradation mutant proteins (MPs) in a plant-microbial system under varying conditions. In scenario III, the MP's microbial degrading ability to replace molecules was increased to the greatest degree (165.82%). Appropriate foods such as corn, pig liver, and yam should be consumed, whereas the simultaneous consumption of high protein foods such as pig liver and walnut should be avoided; sweet potato and yam are believed to be prevent OPFRs and substitute molecules from entering the human body through multiple pathways for reduced genotoxicity of OPFRs in the populations of e-waste handling areas (the reduction degree can reach 85.12%). The study provides a theoretical basis for the development of ecologically acceptable OPFR substitutes and innovative high-efficiency bioremediation MPs, as well as for the reduction of the joint toxicity risk of multiple ingestion route exposure/gene damage of OPFRs in high OPFR exposure sites.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Animais , Biodegradação Ambiental , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Gestão de Riscos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA