Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(5)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38124010

RESUMO

White matter dysmaturation is commonly seen in preterm infants admitted to the neonatal intensive care unit (NICU). Animal research has shown that active sleep is essential for early brain plasticity. This study aimed to determine the potential of active sleep as an early predictor for subsequent white matter development in preterm infants. Using heart and respiratory rates routinely monitored in the NICU, we developed a machine learning-based automated sleep stage classifier in a cohort of 25 preterm infants (12 females). The automated classifier was subsequently applied to a study cohort of 58 preterm infants (31 females) to extract active sleep percentage over 5-7 consecutive days during 29-32 weeks of postmenstrual age. Each of the 58 infants underwent high-quality T2-weighted magnetic resonance brain imaging at term-equivalent age, which was used to measure the total white matter volume. The association between active sleep percentage and white matter volume was examined using a multiple linear regression model adjusted for potential confounders. Using the automated classifier with a superior sleep classification performance [mean area under the receiver operating characteristic curve (AUROC) = 0.87, 95% CI 0.83-0.92], we found that a higher active sleep percentage during the preterm period was significantly associated with an increased white matter volume at term-equivalent age [ß = 0.31, 95% CI 0.09-0.53, false discovery rate (FDR)-adjusted p-value = 0.021]. Our results extend the positive association between active sleep and early brain development found in animal research to human preterm infants and emphasize the potential benefit of sleep preservation in the NICU setting.


Assuntos
Recém-Nascido Prematuro , Substância Branca , Lactente , Feminino , Humanos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sono
2.
J Biomed Inform ; 157: 104689, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029770

RESUMO

The classification of sleep stages is crucial for gaining insights into an individual's sleep patterns and identifying potential health issues. Employing several important physiological channels in different views, each providing a distinct perspective on sleep patterns, can have a great impact on the efficiency of the classification models. In the context of neural networks and deep learning models, transformers are very effective, especially when dealing with time series data, and have shown remarkable compatibility with sequential data analysis as physiological channels. On the other hand, cross-modality attention by integrating information from multiple views of the data enables to capture relationships among different modalities, allowing models to selectively focus on relevant information from each modality. In this paper, we introduce a novel deep-learning model based on transformer encoder-decoder and cross-modal attention for sleep stage classification. The proposed model processes information from various physiological channels with different modalities using the Sleep Heart Health Study Dataset (SHHS) data and leverages transformer encoders for feature extraction and cross-modal attention for effective integration to feed into the transformer decoder. The combination of these elements increased the accuracy of the model up to 91.33% in classifying five classes of sleep stages. Empirical evaluations demonstrated the model's superior performance compared to standalone approaches and other state-of-the-art techniques, showcasing the potential of combining transformer and cross-modal attention for improved sleep stage classification.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Fases do Sono , Humanos , Fases do Sono/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos , Algoritmos , Processamento de Sinais Assistido por Computador , Masculino
3.
Sensors (Basel) ; 24(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400354

RESUMO

Autonomous sleep tracking at home has become inevitable in today's fast-paced world. A crucial aspect of addressing sleep-related issues involves accurately classifying sleep stages. This paper introduces a novel approach PSO-XGBoost, combining particle swarm optimisation (PSO) with extreme gradient boosting (XGBoost) to enhance the XGBoost model's performance. Our model achieves improved overall accuracy and faster convergence by leveraging PSO to fine-tune hyperparameters. Our proposed model utilises features extracted from EEG signals, spanning time, frequency, and time-frequency domains. We employed the Pz-oz signal dataset from the sleep-EDF expanded repository for experimentation. Our model achieves impressive metrics through stratified-K-fold validation on ten selected subjects: 95.4% accuracy, 95.4% F1-score, 95.4% precision, and 94.3% recall. The experiment results demonstrate the effectiveness of our technique, showcasing an average accuracy of 95%, outperforming traditional machine learning classifications. The findings revealed that the feature-shifting approach supplements the classification outcome by 3 to 4 per cent. Moreover, our findings suggest that prefrontal EEG derivations are ideal options and could open up exciting possibilities for using wearable EEG devices in sleep monitoring. The ease of obtaining EEG signals with dry electrodes on the forehead enhances the feasibility of this application. Furthermore, the proposed method demonstrates computational efficiency and holds significant value for real-time sleep classification applications.


Assuntos
Tecnologia Disruptiva , Humanos , Eletroencefalografia/métodos , Fases do Sono , Sono , Aprendizado de Máquina
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 26-33, 2024 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-38403601

RESUMO

Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen's Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.


Assuntos
Fases do Sono , Sono , Fases do Sono/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos , Algoritmos
5.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960641

RESUMO

Sleep is an essential human physiological need that has garnered increasing scientific attention due to the burgeoning prevalence of sleep-related disorders and their impact on public health. Among contemporary challenges, the demand for authentic sleep monitoring outside the confines of specialized laboratories, ideally within the home environment, has arisen. Addressing this, we explore the development of pragmatic approaches that facilitate implementation within domestic settings. Such approaches necessitate the deployment of streamlined, computationally efficient automated classifiers. In pursuit of a sleep stage classifier tailored for home use, this study rigorously assessed seven conventional neural network architectures prominent in deep learning (LeNet, ResNet, VGG, MLP, LSTM-CNN, LSTM, BLSTM). Leveraging sleep recordings from a cohort of 20 subjects, we elucidate that LeNet, VGG, and ResNet exhibit superior performance compared to recent advancements reported in the literature. Furthermore, a comprehensive architectural analysis was conducted, illuminating the strengths and limitations of each in the context of home-based sleep monitoring. Our findings distinctly identify LeNet as the most-amenable architecture for this purpose, with LSTM and BLSTM demonstrating relatively lesser compatibility. Ultimately, this research substantiates the feasibility of automating sleep stage classification employing lightweight neural networks, thereby accommodating scenarios with constrained computational resources. This advancement aims at revolutionizing the field of sleep monitoring, making it more accessible and reliable for individuals in their homes.


Assuntos
Ambiente Domiciliar , Transtornos do Sono-Vigília , Humanos , Redes Neurais de Computação , Sono , Fases do Sono/fisiologia , Eletroencefalografia
6.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050506

RESUMO

The analysis of sleep stages for children plays an important role in early diagnosis and treatment. This paper introduces our sleep stage classification method addressing the following two challenges: the first is the data imbalance problem, i.e., the highly skewed class distribution with underrepresented minority classes. For this, a Gaussian Noise Data Augmentation (GNDA) algorithm was applied to polysomnography recordings to seek the balance of data sizes for different sleep stages. The second challenge is the difficulty in identifying a minority class of sleep stages, given their short sleep duration and similarities to other stages in terms of EEG characteristics. To overcome this, we developed a DeConvolution- and Self-Attention-based Model (DCSAM) which can inverse the feature map of a hidden layer to the input space to extract local features and extract the correlations between all possible pairs of features to distinguish sleep stages. The results on our dataset show that DCSAM based on GNDA obtains an accuracy of 90.26% and a macro F1-score of 86.51% which are higher than those of our previous method. We also tested DCSAM on a well-known public dataset-Sleep-EDFX-to prove whether it is applicable to sleep data from adults. It achieves a comparable performance to state-of-the-art methods, especially accuracies of 91.77%, 92.54%, 94.73%, and 95.30% for six-stage, five-stage, four-stage, and three-stage classification, respectively. These results imply that our DCSAM based on GNDA has a great potential to offer performance improvements in various medical domains by considering the data imbalance problems and correlations among features in time series data.


Assuntos
Eletroencefalografia , Sono , Adulto , Humanos , Criança , Eletroencefalografia/métodos , Fases do Sono , Polissonografia/métodos , Algoritmos
7.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560286

RESUMO

Long-term sleep stage monitoring is very important for the diagnosis and treatment of insomnia. With the development of wearable electroencephalogram (EEG) devices, we developed a fast and accurate sleep stage classification method in this study with single-channel EEG signals for practical applications. The original sleep recordings were collected from the Sleep-EDF database. The wavelet threshold denoising (WTD) method and wavelet packet transformation (WPT) method were applied as signal preprocessing to extract six kinds of characteristic waves. With a comprehensive feature system including time, frequency, and nonlinear dynamics, we obtained the sleep stage classification results with different Support Vector Machine (SVM) models. We proposed a novel classification method based on cascaded SVM models with various features extracted from denoised EEG signals. To enhance the accuracy and generalization performance of this method, nonlinear dynamics features were taken into consideration. With nonlinear dynamics features included, the average classification accuracy was up to 88.11% using this method. In addition, with cascaded SVM models, the classification accuracy of the non-rapid eye movement sleep stage 1 (N1) was enhanced from 41.5% to 55.65% compared with the single SVM model, and the overall classification time for each epoch was less than 1.7 s. Moreover, we demonstrated that it was possible to apply this method for long-term sleep stage monitor applications.


Assuntos
Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Sono , Fases do Sono , Eletroencefalografia/métodos
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(2): 241-248, 2021 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-33913283

RESUMO

Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.


Assuntos
Eletroencefalografia , Fases do Sono , Redes Neurais de Computação , Polissonografia , Sono
9.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260314

RESUMO

Based on the well-established biopotential theory, we hypothesize that the high frequency spectral information, like that higher than 100Hz, of the EEG signal recorded in the off-the-shelf EEG sensor contains muscle tone information. We show that an existing automatic sleep stage annotation algorithm can be improved by taking this information into account. This result suggests that if possible, we should sample the EEG signal with a high sampling rate, and preserve as much spectral information as possible.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Eletromiografia , Humanos
10.
BMC Bioinformatics ; 20(Suppl 16): 586, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787093

RESUMO

BACKGROUND: Sleep is a complex and dynamic biological process characterized by different sleep patterns. Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved significant efforts to prevent sleep-related disorders. To alleviate the time consumption caused by manual visual inspection of PSG, automatic multivariate sleep stage classification has become an important research topic in medical and bioinformatics. RESULTS: We present a unified hybrid self-attention deep learning framework, namely HybridAtt, to automatically classify sleep stages by capturing channel and temporal correlations from multivariate PSG records. We construct a new multi-view convolutional representation module to learn channel-specific and global view features from the heterogeneous PSG inputs. The hybrid attention mechanism is designed to further fuse the multi-view features by inferring their dependencies without any additional supervision. The learned attentional representation is subsequently fed through a softmax layer to train an end-to-end deep learning model. CONCLUSIONS: We empirically evaluate our proposed HybridAtt model on a benchmark PSG dataset in two feature domains, referred to as the time and frequency domains. Experimental results show that HybridAtt consistently outperforms ten baseline methods in both feature spaces, demonstrating the effectiveness of HybridAtt in the task of sleep stage classification.


Assuntos
Algoritmos , Aprendizado Profundo , Fases do Sono/fisiologia , Bases de Dados como Assunto , Eletroencefalografia/métodos , Humanos , Análise Multivariada , Polissonografia , Curva ROC
11.
Biomed Eng Online ; 16(Suppl 1): 78, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28830438

RESUMO

BACKGROUND: Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. METHODS: In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. RESULTS: Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. CONCLUSIONS: The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.


Assuntos
Polissonografia , Processamento de Sinais Assistido por Computador , Fases do Sono , Automação , Humanos
12.
Interdiscip Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155326

RESUMO

Sleep staging is the most crucial work before diagnosing and treating sleep disorders. Traditional manual sleep staging is time-consuming and depends on the skill of experts. Nowadays, automatic sleep staging based on deep learning attracts more and more scientific researchers. As we know, the salient waves in sleep signals contain the most important information for automatic sleep staging. However, the key information is not fully utilized in existing deep learning methods since most of them only use CNN or RNN which could not capture multi-scale features in salient waves effectively. To tackle this limitation, we propose a lightweight end-to-end network for sleep stage prediction based on feature pyramid and joint attention. The feature pyramid module is designed to effectively extract multi-scale features in salient waves, and these features are then fed to the joint attention module to closely attend to the channel and location information of the salient waves. The proposed network has much fewer parameters and significant performance improvement, which is better than the state-of-the-art results. The overall accuracy and macro F1 score on the public dataset Sleep-EDF39, Sleep-EDF153 and SHHS are 90.1%, 87.8%, 87.4%, 84.4% and 86.9%, 83.9%, respectively. Ablation experiments confirm the effectiveness of each module.

13.
Comput Biol Med ; 173: 108314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513392

RESUMO

Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.


Assuntos
Fases do Sono , Sono , Polissonografia/métodos , Eletroencefalografia/métodos , Eletroculografia/métodos
14.
Med Biol Eng Comput ; 62(9): 2769-2783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38700613

RESUMO

Neurodegenerative diseases often exhibit a strong link with sleep disruption, highlighting the importance of effective sleep stage monitoring. In this light, automatic sleep stage classification (ASSC) plays a pivotal role, now more streamlined than ever due to the advancements in deep learning (DL). However, the opaque nature of DL models can be a barrier in their clinical adoption, due to trust concerns among medical practitioners. To bridge this gap, we introduce SleepBoost, a transparent multi-level tree-based ensemble model specifically designed for ASSC. Our approach includes a crafted feature engineering block (FEB) that extracts 41 time and frequency domain features, out of which 23 are selected based on their high mutual information score (> 0.23). Uniquely, SleepBoost integrates three fundamental linear models into a cohesive multi-level tree structure, further enhanced by a novel reward-based adaptive weight allocation mechanism. Tested on the Sleep-EDF-20 dataset, SleepBoost demonstrates superior performance with an accuracy of 86.3%, F1-score of 80.9%, and Cohen kappa score of 0.807, outperforming leading DL models in ASSC. An ablation study underscores the critical role of our selective feature extraction in enhancing model accuracy and interpretability, crucial for clinical settings. This innovative approach not only offers a more transparent alternative to traditional DL models but also extends potential implications for monitoring and understanding sleep patterns in the context of neurodegenerative disorders. The open-source availability of SleepBoost's implementation at https://github.com/akibzaman/SleepBoost can further facilitate its accessibility and potential for widespread clinical adoption.


Assuntos
Fases do Sono , Humanos , Fases do Sono/fisiologia , Eletroencefalografia/métodos , Algoritmos , Aprendizado Profundo , Polissonografia/métodos
15.
Comput Methods Programs Biomed ; 244: 107992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218118

RESUMO

BACKGROUND AND OBJECTIVE: Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification process. METHODS: A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional operation and a graph convolutional operation is proposed for the automated sleep stages using various physiological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi-channel signals and multi-band waves in each channel in the time series, while the graph convolution branch can explore the connections between each channel and each frequency band. In this work, we have developed the proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC datasets (Subgroup 3 and 50 random samples from Subgroup 1). RESULTS: Based on the first expert's label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evaluations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, respectively. CONCLUSION: The results of the performance metrics by the proposed method are much better than those from all the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the contributions of each module towards the classification performance.


Assuntos
Fases do Sono , Sono , Fases do Sono/fisiologia , Fatores de Tempo , Eletroencefalografia/métodos , Eletroculografia/métodos
16.
Comput Biol Med ; 182: 109138, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305732

RESUMO

Numerous automatic sleep stage classification systems have been developed, but none have become effective assistive tools for sleep technicians due to issues with generalization. Four key factors hinder the generalization of these models are instruments, montage of recording, subject type, and scoring manual factors. This study aimed to develop a deep learning model that addresses generalization problems by integrating enzyme-inspired specificity and employing separating training approaches. Subject type and scoring manual factors were controlled, while the focus was on instruments and montage of recording factors. The proposed model consists of three sets of signal-specific models including EEG-, EOG-, and EMG-specific model. The EEG-specific models further include three sets of channel-specific models. All signal-specific and channel-specific models were established with data manipulation and weighted loss strategies, resulting in three sets of data manipulation models and class-specific models, respectively. These models were CNNs. Additionally, BiLSTM models were applied to EEG- and EOG-specific models to obtain temporal information. Finally, classification task for sleep stage was handled by 'the-last-dense' layer. The optimal sampling frequency for each physiological signal was identified and used during the training process. The proposed model was trained on MGH dataset and evaluated using both within dataset and cross-dataset. For MGH dataset, overall accuracy of 81.05 %, MF1 of 79.05 %, Kappa of 0.7408, and per-class F1-scores: W (84.98 %), N1 (58.06 %), N2 (84.82 %), N3 (79.20 %), and REM (88.17 %) can be achieved. Performances on cross-datasets are as follows: SHHS1 200 records reached 79.54 %, 70.56 %, and 0.7078; SHHS2 200 records achieved 76.77 %, 66.30 %, and 0.6632; Sleep-EDF 153 records gained 78.52 %, 72.13 %, and 0.7031; and BCI-MU (local dataset) 94 records achieved 83.57 %, 82.17 %, and 0.7769 for overall accuracy, MF1, and Kappa respectively. Additionally, the proposed model has approximately 9.3 M trainable parameters and takes around 26 s to process one PSG record. The results indicate that the proposed model demonstrates generalizability in sleep stage classification and shows potential as a feasibility tool for real-world applications. Additionally, enzyme-inspired specificity effectively addresses the challenges posed by varying montage of recording, while the identified optimal frequencies mitigate instrument-related issues.

17.
Digit Health ; 9: 20552076231163783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937698

RESUMO

Background: Sleep stage identification is critical in multiple areas (e.g. medicine or psychology) to diagnose sleep-related disorders. Previous studies have reported that the performance of machine learning algorithms can be changed depending on the biosignals and feature-extraction processes in sleep stage classification. Methods: To compare as many conditions as possible, 414 experimental conditions were applied, considering the combination of different biosignals, biosignal length, and window length. Five biosignals in polysomnography (i.e. electrocardiogram (ECG), electroencephalogram (EEG), electromyogram (EMG), electrooculogram left, and electrooculogram right) were used to identify optimal signal combinations for classification. In addition, three different signal-length conditions and six different window-length conditions were applied. The validity of each condition was examined via classification performance from the XGBoost classifiers trained using 10-fold cross-validation. Furthermore, results considering feature importance were examined to validate the experimental results in terms of model explanation. Results: The combination of EEG + EMG + ECG with a 40 s window and 120 s signal length resulted in the best classification performance (precision: 0.853, recall: 0.855, F1-score: 0.853, and accuracy: 0.853). Compared to other conditions and feature importance results, EEG signals showed a relatively higher importance for classification in the present study. Conclusion: We determined the optimal biosignal and window conditions for the feature-extraction process in machine learning algorithm-based sleep stage classification. Our experimental results inform researchers in the future conduct of related studies. To generalize our results, more diverse methodologies and conditions should be applied in future studies.

18.
Sleep Med ; 107: 236-242, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257366

RESUMO

OBJECTIVE: Sleep dysregulation in Parkinson's disease (PD) has been hypothesized to occur, in part, from dysfunction in the basal ganglia-cortical circuit. Assessment of this relationship requires accurate sleep stage determination, a known challenge in this clinical population. Our objective was to optimize the consensus on the sleep staging process and reduce interrater variability in a cohort of advanced PD subjects. METHODS: Fifteen PD subjects were enrolled from three sites in a clinical trial that involved recordings from subthalamic nucleus (STN) deep brain stimulation (DBS) leads (NCT04620551). Video polysomnography (vPSG) data for a total of 45 nights were analyzed. Four experienced scorers independently scored data on initial review. Epochs with less than 75% consensus were flagged for secondary review. In secondary review of discordant epochs, two of the original scorers re-assessed epochs, from which the final consensus stage was derived. RESULTS: Sleep stage classification agreement averaged 83.10% across all sleep stages on initial scoring (IS), and on secondary consensus scoring (CS) review, agreement reached 96.58%. Greatest disagreement was noted in determination of awake epochs (33.6% of discordant epochs) and non-rapid-eye-movement stage 2 (N2) epochs (31.8% of discordant epochs). Scoring discrepancy was resolved with direct measurement of cortical frequency and amplitudes, physiologic context of the epoch, and video review. CONCLUSION: Our method of multi-level initial and then secondary consensus review scoring resulted in consensus scoring agreement superior to conventional standards. This work features a custom-engineered vPSG software and review platform for integration of consensus sleep stage scoring in a multi-site clinical trial.


Assuntos
Doença de Parkinson , Humanos , Consenso , Variações Dependentes do Observador , Doença de Parkinson/complicações , Reprodutibilidade dos Testes , Sono , Fases do Sono/fisiologia
19.
Neurosci Res ; 186: 51-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36206953

RESUMO

Sleep stage-specific intervention is widely used to elucidate the functions of sleep and their underlying mechanisms. For this intervention, it is imperative to accurately classify rapid-eye-movement (REM) sleep. However, the proof of fully automatic real-time REM sleep classification in vivo has not been obtained in mice. Here, we report the in vivo implementation of a system that classifies sleep stages in real-time from a single-channel electroencephalogram (EEG). It enabled REM sleep-specific intervention with 90 % sensitivity and 86 % precision without prior configuration to each mouse. We further derived systems capable of classification with higher frequency sampling and time resolution. This attach-and-go sleep staging system provides a fully automatic accurate and scalable tool for investigating the functions of sleep.


Assuntos
Fases do Sono , Sono REM , Animais , Camundongos , Sono , Eletroencefalografia
20.
Sleep ; 46(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762998

RESUMO

STUDY OBJECTIVES: Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep scoring systems are trained using labels annotated by a single-scorer, whose subjective evaluation is transferred to the model. When annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus. The averaged scorer's subjectivity is transferred into the model, losing information about the internal variability among different scorers. In this study, we aim to insert the multiple-knowledge of the different physicians into the training procedure. The goal is to optimize a model training, exploiting the full information that can be extracted from the consensus of a group of scorers. METHODS: We train two lightweight deep learning-based models on three different multi-scored databases. We exploit the label smoothing technique together with a soft-consensus (LSSC) distribution to insert the multiple-knowledge in the training procedure of the model. We introduce the averaged cosine similarity metric (ACS) to quantify the similarity between the hypnodensity-graph generated by the models with-LSSC and the hypnodensity-graph generated by the scorer consensus. RESULTS: The performance of the models improves on all the databases when we train the models with our LSSC. We found an increase in ACS (up to 6.4%) between the hypnodensity-graph generated by the models trained with-LSSC and the hypnodensity-graph generated by the consensus. CONCLUSION: Our approach definitely enables a model to better adapt to the consensus of the group of scorers. Future work will focus on further investigations on different scoring architectures and hopefully large-scale-heterogeneous multi-scored datasets.


Assuntos
Fases do Sono , Sono , Reprodutibilidade dos Testes , Polissonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA