Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Parasitology ; 151(4): 351-362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305092

RESUMO

Cryptosporidium spp., Giardia intestinalis and microsporidia are unicellular opportunistic pathogens that can cause gastrointestinal infections in both animals and humans. Since companion animals may serve as a source of infection, the aim of the present screening study was to analyse the prevalence of these intestinal protists in fecal samples collected from dogs living in 10 animal shelters in central Europe (101 dogs from Poland and 86 from the Czech Republic), combined with molecular subtyping of the detected organisms in order to assess their genetic diversity. Genus-specific polymerase chain reactions were performed to detect DNA of the tested species and to conduct molecular subtyping in collected samples, followed by statistical evaluation of the data obtained (using χ2 or Fisher's tests). The observed prevalence was 15.5, 10.2, 1 and 1% for G. intestinalis, Enterocytozoon bieneusi, Cryptosporidium spp. and Encephalitozoon cuniculi, respectively. Molecular evaluation has revealed the predominance of dog-specific genotypes (Cryptosporidium canis XXe1 subtype; G. intestinalis assemblages C and D; E. cuniculi genotype II; E. bieneusi genotypes D and PtEbIX), suggesting that shelter dogs do not pose a high risk of human transmission. Interestingly, the percentage distribution of the detected pathogens differed between both countries and individual shelters, suggesting that the risk of infection may be associated with conditions typical of a given location.


Assuntos
Criptosporidiose , Cryptosporidium , Doenças do Cão , Enterocytozoon , Fezes , Giardíase , Microsporidiose , Animais , Cães , Doenças do Cão/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Polônia/epidemiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Fezes/parasitologia , Fezes/microbiologia , República Tcheca/epidemiologia , Giardíase/veterinária , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação , Genótipo , Giardia lamblia/genética , Giardia lamblia/isolamento & purificação , Giardia lamblia/classificação , Especificidade de Hospedeiro
2.
Arch Microbiol ; 204(1): 114, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984547

RESUMO

Ribosomes are the protein production machines in all living cells. Yet in contrast to our understanding of how the ribosome translates DNA information into life, the steps involved in ribosome biogenesis, the assembly of the ribosomal RNA (rRNA) and protein molecules that make up the ribosome, remain incomplete. YbeY is considered one of the most physiologically critical endoribonucleases and is implicated in numerous roles involving RNA including 16S rRNA maturation, yet our existing knowledge of its biochemical function fails to explain the phenotypes that manifest when it is lost. In bacteria, it is common for functionally associated genes to be found co-localized in the genome. Across phylogenetically diverse bacteria, the gene encoding ybeZ, encoding a PhoH domain protein, sits adjacent to ybeY. Recent experimental evidence has shown that PhoH domains are RNA helicases, suggesting that this is also the role of YbeZ. The role of an RNA helicase to support the function of YbeY would help explain its reported biochemistry; therefore, we propose a model for the function of YbeZ in 16S rRNA maturation, linking it with the most recent hypotheses on the function of YbeY, that YbeY together with other ribosomal proteins, and ribosome-associated proteins, plays a role in the biogenesis of the small ribosomal subunit. Our model provides a testable hypothesis to resolve the outstanding details surrounding ribosome biogenesis in bacteria.


Assuntos
Proteínas de Escherichia coli , Metaloproteínas , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
3.
RNA ; 24(7): 881-891, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29712726

RESUMO

The eukaryotic ribosome is made of four intricately folded ribosomal RNAs and 79 proteins. During rapid growth, yeast cells produce an incredible 2000 ribosomes every minute. Ribosome assembly involves more than 200 trans-acting factors, intervening from the transcription of the preribosomal RNA in the nucleolus to late maturation events in the cytoplasm. The biogenesis of the small ribosomal subunit, or 40S, is especially intricate, requiring more than four times the mass of the small subunit in assembly factors for its full maturation. Recent studies have provided new insights into the complex assembly of the 40S subunit. These data from cryo-electron microscopy, X-ray crystallography, and other biochemical and molecular biology methods, have elucidated the role of many factors required in small subunit maturation. Mechanisms of the regulation of ribosome assembly have also emerged from this body of work. This review aims to integrate these new results into an updated view of small subunit biogenesis and its regulation, in yeast, from transcription to the formation of the mature small subunit.


Assuntos
Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Ciclo Celular , Citoplasma/metabolismo , Biogênese de Organelas , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
4.
Methods ; 153: 63-70, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194975

RESUMO

Ribosomes are formed of a small and a large subunit (SSU/LSU), both consisting of rRNA and a plethora of accessory proteins. While biochemical and genetic studies identified most of the involved proteins and deciphered the ribosomal synthesis steps, our knowledge of the molecular dynamics of the different ribosomal subunits and also of the kinetics of their intracellular trafficking is still limited. Adopting a labelling strategy initially used to study mRNA export we were able to fluorescently stain the SSU in vivo. We chose DIM2/PNO1 (Defective In DNA Methylation 2/Partner of NOb1) as labelling target and created a stable cell line carrying an inducible SNAP-DIM2 fusion protein. After bulk labelling with a green fluorescent dye combined with very sparse labelling with a red fluorescent dye the nucleoli and single SSU could be visualized simultaneously in the green and red channel, respectively. We used single molecule microscopy to track single SSU in the nucleolus and nucleoplasm. Resulting trajectory data were analyzed by jump-distance analysis and the variational Bayes single-particle tracking approach. Both methods allowed identifying the number of diffusive states and the corresponding diffusion coefficients. For both nucleoli and nucleoplasm we could identify mobile (D = 2.3-2.8 µm2/s), retarded (D = 0.18-0.31 µm2/s) and immobilized (D = 0.04-0.05 µm2/s) SSU fractions and, as expected, the size of the fractions differed in the two compartments. While the fast mobility fraction matches perfectly the expected nuclear mobility of the SSU (D = 2.45 µm2/s), we were surprised to find a substantial fraction (33%) of immobile SSU in the nucleoplasm, something not observed for inert control molecules.


Assuntos
Subunidades Ribossômicas Menores/metabolismo , Imagem Individual de Molécula/métodos , Transporte Biológico , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Transporte Proteico , Transporte de RNA
5.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138239

RESUMO

Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the "resolution revolution" of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a "vibrating" or "wriggling" stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.


Assuntos
Proteômica/métodos , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Biologia Computacional , Microscopia Crioeletrônica/métodos , RNA Ribossômico 18S/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura , Espectrometria de Massas em Tandem
6.
Microb Ecol ; 77(4): 877-889, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30288544

RESUMO

The recent global decline in Western honeybee (Apis mellifera) populations is of great concern for pollination and honey production worldwide. Declining honeybee populations are frequently infected by the microsporidian pathogen Nosema ceranae. This species was originally described in the Asiatic honeybee (Apis cerana), and its identification in global A. mellifera hives could result from a recent host transfer. Recent genome studies have found that global populations of this parasite are polyploid and that humans may have fueled their global expansion. To better understand N. ceranae biology, we investigated its genetic diversity within part of their native range (Thailand) and among different hosts (A. mellifera, A. cerana) using both PCR and genome-based methods. We find that Thai N. ceranae populations share many SNPs with other global populations and appear to be clonal. However, in stark contrast with previous studies, we found that these populations also carry many SNPs not found elsewhere, indicating that these populations have evolved in their current geographic location for some time. Our genome analyses also indicate the potential presence of diploidy within Thai populations of N. ceranae.


Assuntos
Abelhas/microbiologia , Genoma Fúngico , Nosema/genética , Polimorfismo de Nucleotídeo Único , Animais , Genômica , Reação em Cadeia da Polimerase , Tailândia
7.
Parasitol Res ; 116(1): 99-110, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27686940

RESUMO

Gregarines thrive in the digestive tract of arthropods and may be deleterious to their hosts, especially when present in high densities. The impact of parasites on these invertebrates may affect both the ecosystem equilibrium and human economic activities. However, information available on gregarines in Spain is limited. Therefore, a microscopic study on prevalence of gregarine infection in 560 insects and crustaceans was undertaken in Madrid and Tarragona.Gregarina ormierei (78 % prevalence), Stylocephalus gigas (56 %), Oocephalus hispanus (13 %) and Actinocephalus permagnus (only one infected out of six beetles examined) were found in coleopteran hosts. Gregarina ovata and G. chelidurellae showed moderate frequency of infection (35 %) in dermapterans. An undescribed Gregarina sp. (76 % prevalence) was observed for the first time in freshwater decapod crustaceans. Interestingly, G. ormierei showed a noticeable phenotypic dimorphism, which justifies its redescription based on modern taxonomic criteria. Sequences of the 18S rRNA gene could be obtained only in the presence of highly prevalent gregarines. G. ormierei and Gregarina sp. were related (85 and 94 % identity by BLASTN, respectively) to G. basiconstrictonea and G. cloptoni, respectively, whereas S. gigas was closely related to both Xiphocephalus ellisi and S. giganteus (>97 % identity). Phylogenetic trees based on ribosomal sequences unequivocally grouped these new isolates either with the Gregarinidae (G. ormierei and Gregarina sp.) or the Stylocephalidae (S. gigas).


Assuntos
Apicomplexa/fisiologia , Artrópodes/parasitologia , Biodiversidade , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/isolamento & purificação , DNA Ribossômico/genética , Ecossistema , Especificidade de Hospedeiro , Filogenia , Espanha
8.
Int J Cancer ; 136(10): 2328-40, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25346496

RESUMO

Metastatic ovarian cancer has a dismal prognosis and current chemotherapeutic approaches have very limited success. Metadherin (MTDH) is expressed in human ovarian cancer tissue and its expression inversely correlates with patients overall survival. Consistent with these studies, we observed MTDH expression in tissue specimens of FIGO Stage III ovarian carcinomas (72/83 cases). However, we also observed this in normal human ovarian epithelial (OE) cells, which raised the question of whether MTDH-variants with functional differences exist. We identified a novel MTDH exon 11 skipping variant (MTDHdel) which was seen at higher levels in ovarian cancer compared to benign OE cells. We analyzed MTDH-binding partner interactions and found that 12 members of the small ribosomal subunit and several mRNA binding proteins bound stronger to MTDHdel than to wildtype MTDH which indicates differential effects on gene translation. Knockdown of MTDH in ovarian cancer cells reduced the amount of distant metastases and improved the survival of ovarian cancer-bearing mice. Selective overexpression of the MTDHdel enhanced murine and human ovarian cancer progression and caused a malignant phenotype in originally benign human OE cells. MTDHdel was detectable in microdissected ovarian cancer cells of some human tissue specimens of ovarian carcinomas. In summary, we have identified a novel MTDH exon 11 skipping variant that shows enhanced binding to small ribosomal subunit members and that caused reduced overall survival of ovarian cancer bearing mice. Based on the findings in the murine system and in human tissues, MTDHdel must be considered a major promalignant factor for ovarian cancer.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Membrana/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Deleção de Sequência , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Éxons , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transplante de Neoplasias , Proteínas de Ligação a RNA
9.
RNA Biol ; 12(3): 354-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826667

RESUMO

The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of ß-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5' and 3' UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5' and 3' UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3' terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2.


Assuntos
Sequência de Bases , Caseínas/genética , Códon/metabolismo , Leite/química , Biossíntese de Proteínas , Deleção de Sequência , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Caseínas/biossíntese , Bovinos , Sistema Livre de Células/metabolismo , Códon/química , Feminino , Regulação da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta , Polirribossomos/genética , Polirribossomos/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética
10.
Cell Rep ; 43(5): 114126, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38630588

RESUMO

Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.


Assuntos
Ribossomos , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Iniciação Traducional da Cadeia Peptídica , Humanos , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Res Microbiol ; 173(4-5): 103936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35217168

RESUMO

16S rRNA gene is frequently used for the identification of prokaryotic organisms and for phylogeny inference. Several specialized public databases exist that contain complete and partial sequences of 16S rRNA genes. In this paper, we present RiboGrove: the first publicly available database that comprises only full-length sequences of 16S rRNA genes originating from completely assembled prokaryotic genomes deposited in RefSeq. Despite being strongly biased towards frequently sequenced genomes, RiboGrove is a useful complement to existing 16S rRNA resources and allows for analyses that would not be possible using amplicon-derived gene sequences. For instance, the absence of partial gene sequences in RiboGrove allowed us to make a summary of prokaryotic organisms, which lack core anti-Shine-Dalgarno sequence in their 16S rRNA genes. In this study, we describe the collected sequence data and present the results of exploratory data analysis of 16S rRNA gene sequences.


Assuntos
RNA Ribossômico 16S , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
12.
Open Life Sci ; 16(1): 711-718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307886

RESUMO

The entomopathogenic fungus T011, parasitizing on nymph of Cicada, collected in the coffee garden in Dak Lak Province, Vietnam, was preliminarily morphologically identified as Isaria cicadae, belonged to order Hypocreales and family Clavicipitaceae. To ensure the authenticity of T011, phylogenetic analysis of the concatenated set of multiple genes including ITS, nrLSU, nrSSU, Rpb1, and Tef1 was applied to support the identification. Genomic DNA was isolated from dried sample T011. The PCR assay sequencing was applied to amplify ITS, nrLSU, nrSSU, Rpb1, and Tef1 gene. For phylogenetic analysis, the concatenated data of both target gens were constructed with MEGAX with a 1,000 replicate bootstrap based on the neighbor-joining, maximum likelihood, maximum parsimony method. As the result, the concatenated data containing 62 sequences belonged to order Hypocreales, families Clavicipitaceae, and 2 outgroup sequences belonged to order Hypocreales, genus Verticillium. The phylogenetic analysis results indicated that T011 was accepted at subclade Cordyceps and significantly formed the monophyletic group with referent Cordyceps cicadae (Telemorph of Isaria cicadae) with high bootstrap value. The phylogenetically analyzed result was strongly supported by our morphological analysis described as the Isaria cicadae. In summary, phylogenetic analyses based on the concatenated dataset were successfully applied to strengthen the identification of T011 as Isaria cicadae.

13.
Elife ; 102021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908345

RESUMO

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética
14.
Cell Rep ; 31(3): 107534, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320657

RESUMO

Translation initiation is often attributed as the rate-determining step of eukaryotic protein synthesis and key to gene expression control. Despite this centrality, the series of steps involved in this process is poorly understood. Here, we capture the transcriptome-wide occupancy of ribosomes across all stages of translation initiation, enabling us to characterize the transcriptome-wide dynamics of ribosome recruitment to mRNAs, scanning across 5' UTRs and stop codon recognition, in a higher eukaryote. We provide mechanistic evidence for ribosomes attaching to the mRNA by threading the mRNA through the small subunit. Moreover, we identify features that regulate the recruitment and processivity of scanning ribosomes and redefine optimal initiation contexts. Our approach enables deconvoluting translation initiation into separate stages and identifying regulators at each step.


Assuntos
Iniciação Traducional da Cadeia Peptídica/genética , Humanos , Subunidades Ribossômicas Menores/metabolismo
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194490, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991215

RESUMO

The eukaryotic ribosomal protein uS19 has a C-terminal tail that is absent in its bacterial homologue. This tail has been shown to be involved in the formation of the decoding site of human ribosomes. We studied here the previously unexplored functional significance of the 15 C-terminal amino acid residues of human uS19 for the assembly of ribosomes and translation using HEK293-based cell cultures capable of producing FLAG-labeled uS19 (uS19FLAG) or its mutant form deprived of the mentioned amino acid ones. The examination of polysome profiles of cytoplasmic extracts from the respective cells revealed that the deletion of the above uS19 amino acid residues barely affected the assembly and maturation of 40S subunits and the initiation of translation, but completely prevented the formation of polysomes. This implied the crucial importance of the uS19 tail in the elongation process. Analysis of tRNAs associated with 40S subunits and 80S ribosomes containing wild type uS19FLAG or its truncated form showed that the deletion of the C-terminal pentadecapeptide fragment of uS19 did not interfere with the binding of aminoacyl-tRNA (aa-tRNA) at the ribosomal A site. The results led to the conclusion that the transpeptidation, which occurs on the large ribosomal subunit after decoding the A site codon by the incoming aa-tRNA, is the most likely elongation stage, where this uS19 fragment can play a critical role. Our findings suggest that the uS19 tail is a keystone player in the accommodation of aa-tRNA at the A site, which is a pre-requisite for the peptide transfer.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Polirribossomos/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Deleção de Sequência
16.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194411, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356988

RESUMO

Conserved ribosomal protein uS3 contains a decapeptide fragment in positions 55-64 (human numbering), which has a very specific ability to cross-link to various RNA derivatives bearing aldehyde groups, likely provided by K62. It has been shown that during translation in the cell-free protein-synthesizing system, uS3 becomes accessible for such cross-linking only after eIF3j leaves the mRNA binding channel of the 40S ribosomal subunit. We studied the functional role of K62 and its nearest neighbors in the ribosomal assembly and translation with the use of HEK293T-derived cell cultures capable of producing FLAG-tagged uS3 (uS3FLAG) or its mutant form with amino acid residues at positions 60-63 replaced with alanines. Analysis of polysome profiles from the respective cells and cytosol lysates showed that the mutation significantly affected the uS3 ability to participate in the assembly of 40S subunits, but it was not essential for their maturation and did not prevent the binding of mRNAs to 40S subunits during translation initiation. The most striking effect of the replacement of amino acid residues in the above uS3 positions was that it almost completely deprived the 40S subunits of their ability to form 80S ribosomes, suggesting that the 48S pre-initiation complexes assembled on these subunits were defective in the binding of 60S subunits. Thus, our results revealed the previously unknown crucial role of the uS3 tetrapeptide 60GEKG63 in translation initiation related to maintaining the proper structure of the 48S complex, most likely via the prevention of premature mRNA loading into the ribosomal channel.


Assuntos
Peptídeos/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Aminoácidos/química , Aminoácidos/genética , Sistema Livre de Células , Células HEK293 , Humanos , Peptídeos/química , Polirribossomos/química , Polirribossomos/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/química
17.
PeerJ ; 4: e1966, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114891

RESUMO

Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

18.
Translation (Austin) ; 3(1): e975018, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779413

RESUMO

The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders.

19.
Antiviral Res ; 117: 1-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666760

RESUMO

Previous studies have demonstrated that cyclopentenone prostaglandins (cyPGs) inhibit the replication of a wide variety of DNA and RNA viruses in different mammalian cell types. We investigated a new role for prostaglandin A1 (PGA1) in the inhibition of hepatitis C virus (HCV)-IRES-mediated translation. PGA1 exhibited dose-dependent inhibitory effects on HCV translation in HCV replicon cells. Furthermore, repetitive PGA1 treatment demonstrated the potential to safely induce the suppression of HCV translation. We also validated a new role for PGA1 in the inhibition of HCV-IRES-mediated translation by targeting cellular translation factors, including the small ribosomal subunit (40S) and eukaryotic initiation factors (eIFs). In pull-down assays, biotinylated PGA1 co-precipitated with the entire HCV IRES RNA/eIF3-40S subunit complex. Moreover, the interactions between PGA1 and the elongation factors and ribosomal subunit were dependent upon HCV IRES RNA binding, and the PGA1/HCV IRES RNA/eIF3-40S subunit complex inhibited HCV-IRES-mediated translation. The novel mechanism revealed in this study may aid in the search for more effective anti-HCV drugs.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepacivirus/genética , Hepacivirus/metabolismo , Prostaglandinas A/metabolismo , Prostaglandinas A/farmacologia , Replicon/efeitos dos fármacos , Subunidades Ribossômicas Menores/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/genética , Replicon/fisiologia , Subunidades Ribossômicas Menores/metabolismo
20.
Translation (Austin) ; 3(1): e999576, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779416

RESUMO

High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may facilitate eukaryote-specific reactions in the initiation phase of protein synthesis. This review summarizes emerging data describing the structural and functional significance of eukaryote-specific extensions of conserved small ribosomal subunit proteins, particularly their possible roles in recruitment and spatial organization of eukaryote-specific initiation factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA