Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427496

RESUMO

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Mutação Puntual , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Eletromiografia , Itália , Miotonia/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
2.
Ann Med Surg (Lond) ; 86(2): 1191-1195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333241

RESUMO

Introduction and importance: Sodium channel myotonia (SCM) belongs to the group of sodium channelopathies with mutations involving SCN4A gene. The main feature of sodium channel myotonia is pure myotonia without episodes of weakness or paralysis. One of the sodium channel myotonia has been classified as acetazolamide-responsive myotonia because of the effectiveness of acetazolamide as an antimyotonic drug. Case presentation: The child presented with generalized muscle hypertrophy and stiffness involving arms, thighs, calves, chest, and back muscles with unusually prominent trapezius muscle. The parents described the warm-up phenomenon as an improvement in stiffness as the day passes and with repetitive action. Percussion myotonia was illustrated in the thenar eminence and trapezius muscle. Characteristic 'dive-bomber' sound was present in electromyography, and whole-exome sequencing revealed a novel Ile239Thr mutation in the SCN4A gene. Acetazolamide was prescribed for the condition, and regular follow-up shows an excellent clinical response. Clinical discussion: This case presents a pure myotonic phenotype without episodes of weakness or paralysis. Generalized myotonia with muscle hypertrophy and demonstrating warm-up phenomenon resembles myotonia congenita (a chloride channelopathy). However, genetic analysis revealed a novel Ile239Thr mutation involving SCN4A gene indicating this case to be a sodium channelopathy. Conclusion: This case limelight sodium channel myotonia with a novel Ile239Thr mutation in SCN4A gene that phenotypically resembles myotonia congenita but genetically belongs to sodium channelopathy highlighting the poor correlation between genotypes and phenotypes in non-dystrophic myotonia. Acetazolamide can be a safe and cost-effective antimyotonic drug in sodium channel myotonia.

3.
Neuromuscul Disord ; 32(10): 811-819, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050252

RESUMO

The non-dystrophic myotonias are inherited skeletal muscle disorders characterized by skeletal muscle stiffness after voluntary contraction, without muscle atrophy. Based on their clinical features, non-dystrophic myotonias are classified into myotonia congenita, paramyotonia congenita, and sodium channel myotonia. Using whole-exome next-generation sequencing, we identified a L703P mutation (c.2108T>C, p.L703P) in SCN4A in a Chinese family diagnosed with non-dystrophic myotonias. The clinical findings of patients in this family included muscle stiffness and hypertrophy. The biophysical properties of wildtype and mutant channels were investigated using whole-cell patch clamp. L703P causes both gain-of-function and loss-of-function changes in Nav1.4 properties, including decreased current density, impaired recovery, enhanced activation and slow inactivation. Our study demonstrates that L703P is a pathogenic variant for myotonia, and provides additional electrophysiological information for understanding the pathogenic mechanism of SCN4A-associated channelopathies.


Assuntos
Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação , Miotonia/genética , Miotonia/diagnóstico , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
4.
Curr Treat Options Neurol ; 22(10): 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848354

RESUMO

PURPOSE OF REVIEW: This article aims to review the current and upcoming treatment options of primary muscle channelopathies including the non-dystrophic myotonias and periodic paralyses. RECENT FINDINGS: The efficacy of mexiletine in the treatment of myotonia is now supported by two randomised placebo-controlled trials, one of which utilised a novel aggregated n-of-1 design. This has resulted in licencing of the drug via orphan drug status. There is also good evidence that mexiletine is well tolerated and safe in this patient group without the need for intensive monitoring. A range of alternative antimyotonic treatment options include lamotrigine, carbamazepine and ranolazine exist with variable evidence base. In vitro studies have shown insight into reasons for treatment failure of some medications with certain genotypes opening the era of mutation-specific therapy such as use of flecainide. In the periodic paralyses, the ability of MRI to distinguish between reversible oedema and irreversible fatty replacement makes it an increasingly useful tool to guide and assess pharmacological treatment. Unfortunately, the striking efficacy of bumetanide in hypokalaemic periodic paralysis animal models was not replicated in a recent pilot study in humans. SUMMARY: The treatment of skeletal muscle channelopathies combines dietary and lifestyle advice together with pharmacological interventions. The rarity of these conditions remains a barrier for clinical studies but the example of the aggregated n-of-1 trial of mexiletine shows that innovative trial design can overcome these hurdles. Further research is required to test efficacy of drugs shown to have promising characteristics in preclinical experiments such as safinamide, riluzule and magnesium for myotonia or bumetanide for hypokalaemic periodic paralysis.

5.
Front Neurol ; 11: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411069

RESUMO

Sodium channel myotonia is a form of muscle channelopathy due to mutations that affect the Nav1.4 channel. We describe seven families with a series of symptoms ranging from asymptomatic to clearly myotonic signs that have in common two novel mutations, p.Ile215Thr and p.Gly241Val, in the first domain of the Nav1.4 channel. The families described have been clinically and genetically evaluated. p.Ile215Thr and p.Gly241Val lie, respectively, on extracellular and intracellular loops of the first domain of the Nav1.4 channel. We assessed that the p.Ile215Thr mutation can be related to a founder effect in people from Southern Italy. Electrophysiological evaluation of the channel function showed that the voltage dependence of the activation for both the mutant channels was significantly shifted toward hyperpolarized potentials (Ile215Thr: -28.6 ± 1.5 mV and Gly241Val: -30.2 ± 1.3 mV vs. WT: -18.5 ± 1.3 mV). The slow inactivation was also significantly affected, whereas fast inactivation showed a different behavior in the two mutants. We characterized two novel mutations of the SCN4A gene expanding the knowledge about genetics of mild forms of myotonia, and we present, to our knowledge, the first homozygous patient with sodium channel myotonia.

6.
JA Clin Rep ; 5(1): 77, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32026975

RESUMO

BACKGROUND: Sodium-channel myotonia (SCM) is a nondystrophic myotonia, characterized by pure myotonia without muscle weakness or paramyotonia. The prevalence of skeletal muscle channelopathies is approximately 1 in 100,000, and the prevalence of SCM is much lower. To our knowledge, this is the first report on anesthetic management of a patient with SCM. CASE PRESENTATION: A 23-year-old woman with congenital nasal dysplasia and SCM was scheduled to undergo rhinoplasty with autologous costal cartilage. Total intravenous anesthesia without muscle relaxants was administered followed by continuous intercostal nerve block. Although transient elevation of potassium level in the blood was observed during surgery, the patient did not show exacerbation of myotonic or paralytic symptoms in the postoperative period. CONCLUSION: Total intravenous anesthesia and peripheral nerve block can be administered safely to a patient with SCM. However, careful monitoring of the symptoms and electrolytes is recommended.

7.
Rinsho Shinkeigaku ; 57(6): 287-292, 2017 06 28.
Artigo em Japonês | MEDLINE | ID: mdl-28552867

RESUMO

We reported a 32-year-old man who was a sporadic case of myotonic syndrome with muscle stiffness or transient weakness of limbs upon initiating movements after rest. On examination, he showed painless myotonia with warm-up phenomenon, Hercules-like hypertrophic musculature and myotonic discharges in EMG. The clinical findings resembled to those of Becker disease rather than Thomsen disease. But electrodiagnosis suggested sodium channel myotonia instead of chloride channelopathy. Genetic testing detected a novel missense mutation (p.V1166A) in the SCN4A gene but not in the CLCN1 gene. Transient weakness upon initiating movements is usually observed in Becker disease but rare in Thomsen disease, which is not reported in sodium channel myotonia so far. He was probably the first case of sodium channel myotonia with transient weakness upon initiating movements, which was confirmed by 10 Hz repetitive nerve stimulation test as depolarization block.


Assuntos
Eletrodiagnóstico , Movimento/fisiologia , Debilidade Muscular/diagnóstico , Miotonia Congênita/diagnóstico , Adulto , Eletromiografia , Testes Genéticos , Humanos , Masculino , Debilidade Muscular/complicações , Debilidade Muscular/fisiopatologia , Mutação de Sentido Incorreto , Miotonia Congênita/complicações , Miotonia Congênita/genética , Miotonia Congênita/patologia , Miotonia Congênita/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Estimulação Elétrica Nervosa Transcutânea
8.
Neuromuscul Disord ; 24(11): 953-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088311

RESUMO

Nondystrophic myotonias are characterized by muscle stiffness triggered by voluntary movement. They are caused by mutations in either the CLCN1 gene in myotonia congenita or in the SCN4A gene in paramyotonia congenita and sodium channel myotonias. Clinical and electrophysiological phenotypes of these disorders have been well described. No concomitant mutations in both genes have been reported yet. We report five patients from three families showing myotonia with both chloride and sodium channel mutations. Their clinical and electrophysiological phenotypes did not fit with the phenotype known to be associated with the mutation initially found in SCN4A gene, which led us to screen and find an additional mutation in CLCN1 gene. Our electrophysiological and clinical observations suggest that heterozygous CLCN1 mutations can modify the clinical and electrophysiological expression of SCN4A mutation.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética , Adolescente , Adulto , Análise Mutacional de DNA , Eletrofisiologia , Humanos , Masculino , Modelos Moleculares , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA