Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 244: 117918, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097059

RESUMO

This study investigates the synergistic role of carbon dioxide nanobubbles (CNBs) and biochar (BC) on seed germination, plant growth, and soil quality, employing Solanum lycopersicum (tomato) and Phaseolus vulgaris (beans) as test plant species. CNBs, generated and dispersed in both distilled water (DW) and tap water (TW), exhibited distinct characteristics, with TW-CNBs being larger and more stable (peak values of around 18.17 nm and 299.5 nm, zeta potential (ZP) of -5.91 mV), while DW-CNBs have peak values of around 1.63 nm and 216.1 nm, ZP of -3.23 mV. The results suggest CNBs enhance seed germination by upto 20%. CNBs in BC amended soil further promoted plant height and leaf number. CNBs increased dissolved CO2 levels to 2-24 ppm within 40 min, while BC enriched soil organic carbon from 19.20 to 24.96 ppm in beans and 18.33 to 22.35 ppm in tomatoes. The pH levels decreased from 7.68 to 3.78 for TW-CNBs and from 7.41 to 2.13 for DW-CNBs. Additionally, the electrical conductivity (EC) decreased from 112.1 to 99.6 for TW-CNBs, while it increased from 4.15 to 32.1 for DW-CNBs. Together they significantly increased soil available phosphorus and potassium to 4.03-8.06 and 3.58-7.16 kg ha-1; and 5.67-55.74 and 17.57-43.79 kg ha-1 in bean and tomato, respectively. Variations in nutrient concentrations were observed, with substantial increase in Na (16.27% and 6.58%), Zn (3.39% and 0.46%), and Mg (5.05% and 1.44%) content for beans and tomatoes, respectively. Structural equation model and principal component analysis revealed differences between CNB and BC treated soils, highlighting positive impact on soil quality and plant growth compared to control. Integration of CNBs and BC presents a multifaceted approach to enhance soil quality and promote plant growth, offering promising solutions for sustainable agriculture and environmental management.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Solo , Solo/química , Carbono , Água , Nutrientes
2.
Environ Res ; 246: 118149, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199466

RESUMO

Contaminated farmland leads to serious problems for human health through biomagnification in the soil-crop-human chain. In this paper, we have established a new soil remediation strategy using periphyton for the production of safer rice. Four representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (Phe), pyrene (Pyr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were chosen to generate artificially contaminated soil. Pot experiments demonstrated that in comparison with rice cultivation in polluted soil with ΣPAHs (50 mg kg-1) but without periphyton, adding periphyton decreased ΣPAHs contents in both rice roots and shoots by 98.98% and 99.76%, respectively, and soil ΣPAHs removal reached 94.19%. Subsequently, risk assessment of ΣPAHs based on toxic equivalent concentration (TEQ), pollution load index (PLI), hazard index (HI), toxic unit for PAHs mixture (TUm), and incremental lifetime cancer risk (ILCR) indicated that periphyton lowered the ecological and carcinogenicity risks of PAHs. Besides, the role of periphyton in enhancing the rice productivity was revealed. The results indicated that periphyton alleviated the oxidative stress of PAHs on rice by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC). Periphyton reduced the toxic stress of PAHs on the soil by promoting soil carbon cycling and metabolic activities as well. Periphyton also improved the soil's physicochemical properties, such as the percentage of soil aggregate, the contents of humic substances (HSs) and nutrients, which increased rice biomass. These findings confirmed that periphyton could improve rice productivity by enhancing soil quality and health. This study provides a new eco-friendly strategy for soil remediation and simultaneously enables the production of safe crops on contaminated land.


Assuntos
Neoplasias , Perifíton , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo/química , Substâncias Húmicas , Poluentes do Solo/análise
3.
Environ Res ; 244: 117931, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103774

RESUMO

Arable land is facing the growing challenge of land degradation due to intensive use and this is beginning to affect global food security. However, active and passive restoration can improve soil characteristics and reshape microbial communities. Despite the increasing focus on changes in microbial communities during restoration, the mechanisms underlying how microbes drive the soil quality index (SQI) in arable land restoration remain unclear. In this study, we selected conventional farmland (CF, heavily intensified) and two restoration strategies (AR, artificial restoration; NR, natural restoration), with the same context (including soil texture, climate, etc.), and measured the microbial indicators over 2 years to investigate the mechanisms driving SQI improvement on restored arable land. The AR and NR treatments resulted in a 50% and 58% increase in SQI, respectively, compared to CF as soil nutrient levels increased, resulting in higher microbial biomasses and enzyme activities. Microbial abundance on the AR land was approximately two times greater than on the NR land due to the introduction of legumes. Bacterial diversity declined, while fungi developed in a more diverse direction under the restoration strategies. The AR and NR areas were mainly enriched with rhizobium (Microvirga, Bradyrhizobium), which contribute to healthy plant growth. The pathogenic fungi (Gibberella, Fusarium, Volutella) were more abundant in the CF area and the plant pathogen guild was about five times higher in the restored areas. Following arable land restoration, microbial life history strategies shifted from r-to K-strategists due to the higher proportion of recalcitrant SOC (DOC/SOC decreased by 18%-30%). The altered microbial community in the restored areas created new levels of functionality, with a 2.6%-4.3% decrease in bacterial energy metabolism (oxidative phosphorylation, C fixation, and N metabolism decreased by 7%, 4%, and 6%, respectively). Structural equation modelling suggested that restoration strategy affected SQI either directly by increasing total soil nutrient levels or indirectly by altering the microbial community and that fungal community composition and bacterial diversity made the largest contributions to SQI. These results provided new insights into soil quality improvement from a microbial perspective and can help guide future arable land restoration.


Assuntos
Micobioma , Solo , Bactérias/genética , Plantas , Biomassa , Fungos , Microbiologia do Solo
4.
Environ Res ; 262(Pt 1): 119851, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39208969

RESUMO

The study investigated soil quality around brick kilns in the Jammu district of Jammu and Kashmir, analyzing 200 samples from 50 sites for selected parameters such as pH, electrical conductiv1ity, soil temperature, organic carbon content, organic matter, macronutrients, and heavy metals. The findings revealed that soil electrical conductivity ranged from 0.33 to 0.63 dS/m, with significant differences observed at varying distances from the kilns. Copper concentrations were highest at 5.32 mg/kg near the kilns, while iron and lead levels also varied significantly, indicating potential contamination. The mean soil temperature was recorded to be 27.69°C.The pH values ranged from 6.5 to 7.8, and the average pH of 8.22 indicated the slightly alkaline nature of the soil around the brick kilns. The organic carbon ranged from 0.34% to 1.02%.Soil temperature and electrical conductivity decreased with increasing distance from the kilns, with temperature showing positive correlations with organic carbon, organic matter, nitrogen, potassium, manganese, and iron and negative correlations with pH, phosphorus, zinc, copper, lead, and cadmium. A perfect positive correlation was noted among nitrogen, organic carbon, and organic matter. Heavy metals, except for zinc and manganese, showed positive correlations with each other. The average Zn, Cu, Mn, Fe, Pb and Cd concentration was recorded as 1.07, 1.03, 6.71, 10.30, 37.04 and 1.91 ppm, respectively. The contamination factor indicated moderate contamination with lead and cadmium, while the geo-accumulation index also suggested moderate contamination. The pollution load index reflected unpolluted soil and enrichment factor values for heavy metals ranked as Cd > Pb > Cu > Zn > Mn > Fe.ANOVA results revealed significant variations in electrical conductivity, copper, iron, and lead, underscoring the potential environmental impacts at different distances from the kilns. However, no significant differences were found between agricultural and non-agricultural sites in other physicochemical parameters. These variations highlight the considerable impact of brick kilns on soil health, emphasizing the need for enhanced environmental management and further research to mitigate these effects.

5.
Environ Res ; 248: 118413, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316388

RESUMO

Roadside soil contamination is mostly caused by human-caused pollutant deposition. PTEs are among the many substances that are harmful for both humans and the environment. PTE concentrations in roadside soil in Chennai, southern India, have been determined in this study. To evaluate the seriousness of the threats, more environmental and geochemical indices have been applied. 83 soil samples have been obtained from the study regions and focusing on important roads. Elemental analysis has been analyzed with ED-XRF and sieve-filtered samples focused on PTEs such as arsenic, barium, cobalt, chromium, copper, iron, potassium, nickel, lead, thorium, titanium, zinc, and uranium. Significant metallic variations have been found in soil samples around roads by the investigation. The elements this study examined section ascending in the following sequence: Fe > Ti > Zn > Cr > Pb > Cu > Ni > Th > As > U > K. In the research area, the CD classification denotes high contamination, whereas the CF indices show mild to significant pollution. PLI indicates moderate to high pollution, whereas EF suggests excessive enrichment. Igeo demonstrates a range from uncontaminated to highly contaminated. PERI showed high levels in the northern study region, whereas GUFI shows several hot spots indicating moderate to severe pollution. The Hazard Index (HI) values for all metals were less than one, demonstrating the absence of non-carcinogenic risks for both adults and children. Multivariate data show natural and anthropogenic PTEs in roadside soil. In addition, a soil quality monitoring system is needed to mitigate continual contamination risks.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Metais Pesados/análise , Solo/química , Monitoramento Ambiental , Índia , Medição de Risco , Poluentes do Solo/análise , China , Cádmio/análise
6.
Ecotoxicol Environ Saf ; 281: 116592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901167

RESUMO

Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.


Assuntos
Carvão Vegetal , Micorrizas , Rizosfera , Microbiologia do Solo , Solo , Solo/química , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Álcalis , Microbiota/efeitos dos fármacos , Biomassa , Panicum/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos
7.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339581

RESUMO

Soil health plays a crucial role in crop production, both in terms of quality and quantity, highlighting the importance of effective methods for preserving soil quality to ensure global food security. Soil quality indices (SQIs) have been widely utilized as comprehensive measures of soil function by integrating multiple physical, chemical, and biological soil properties. Traditional SQI analysis involves laborious and costly laboratory analyses, which limits its practicality. To overcome this limitation, our study explores the use of visible near-infrared (vis-NIR) spectroscopy as a rapid and non-destructive alternative for predicting soil properties and SQIs. This study specifically focused on seven soil indicators that contribute to soil fertility, including pH, organic matter (OM), potassium (K), calcium (Ca), magnesium (Mg), available phosphorous (P), and total nitrogen (TN). These properties play key roles in nutrient availability, pH regulation, and soil structure, influencing soil fertility and overall soil health. By utilizing vis-NIR spectroscopy, we were able to accurately predict the soil indicators with good accuracy using the Cubist model (R2 = 0.35-0.93), offering a cost-effective and environmentally friendly alternative to traditional laboratory analyses. Using the seven soil indicators, we looked at three different approaches for calculating and predicting the SQI, including: (1) measured SQI (SQI_m), which is derived from laboratory-measured soil properties; (2) predicted SQI (SQI_p), which is calculated using predicted soil properties from spectral data; and (3) direct prediction of SQI (SQI_dp), The findings demonstrated that SQI_dp exhibited a higher accuracy (R2 = 0.90) in predicting soil quality compared to SQI_p (R2 = 0.23).

8.
J Environ Manage ; 359: 120964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692027

RESUMO

Improving soil quality without creating any environmental problems is an unescapable goal of sustainable agroecosystem management, according to the United Nations 2030 Agenda for Sustainable Development. Therefore, sustainable solutions are in high demand. One of these is the use of biopolymers derived from microbes and seaweed. This paper aims to provide an overview of the sources of extraction and use of microbial (bacteria and cyanobacteria) and seaweed-based biopolymers as soil conditioners, the characteristics of biopolymer-treated soils, and their environmental concerns. A preliminary search was also carried out on the entire Scopus database on biopolymers to find out how much attention has been paid to biopolymers as biofertilizers compared to other applications of these molecules until now. Several soil quality indicators were evaluated, including soil moisture, color, structure, porosity, bulk density, temperature, aggregate stability, nutrient availability, organic matter, and microbial activity. The mechanisms involved in improving soil quality were also discussed.


Assuntos
Alga Marinha , Solo , Solo/química , Biopolímeros/análise , Microbiologia do Solo , Cianobactérias , Bactérias , Fertilizantes/análise
9.
J Environ Manage ; 354: 120303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368802

RESUMO

The application of natural zeolites to improve soil quality and functioning has become highly popular, but we still miss information about the long-term effects on the soil due to its application. This study assesses the soil quality index (SQI) of three distinct agricultural soil systems 6-10 years after a single application of natural chabazite zeolite as a soil amendment. These soils exhibit different management practices: intensive arable (cereals), intensive perennial (pear) and organic perennial (olive). In the arable system, a zeolite application dosage of 5, 10 and 15 kg m-2 was tested and compared to unamended soil. In the two perennial systems, an application of 5 kg m-2 was tested against untreated reference sols. A set of 25 soil physical, chemical and biological parameters linked to soil health and quality were analysed at each experimental site. The dataset was investigated through Principal Component Analysis (PCA) to calculate the soil quality index (SQI) using linear scoring. In the arable-cereal field, the SQI doubled (0.3 to ca. 0.6 for all amendments) in chabazite-amended plots; a dose effect was not recognizable. In both perennial fields, the SQI was significantly higher in the chabazite-amended plots (5 kg m-2) with similar increases as compared to the arable-cereal field. At each site, the indicators selected by the PCA were different, indicating that chabazite addition impacted soil quality differently in each cropping system. Overall, the results highlighted a significant increase in soil quality with chabazite amendment, which confirms its potential for increasing soil health in the long-term.


Assuntos
Solo , Zeolitas , Agricultura/métodos , Grão Comestível
10.
J Environ Manage ; 358: 120889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652993

RESUMO

Evaluating soil quality (SQ) resulting from land management use impact is important for soil carbon (C) monitoring, land sustainability and suitability. However, the data in less developed regions of Africa like Nigeria is scarce, limiting our understanding at global scale. The study evaluated land management use on soil quality in Ebonyi State, Nigeria, a representative region of Africa. Soil samples were collected in 2021 and resampled in 2022 from regions including five land use managements (FS = forest soil; GLS = grass land soil; ACS = alley cropping Soil; SDS = sewage dump-soils; CCS = continuously cultivated soil). Soil physical and chemical properties were analyzed and discussed. The results shows that soil physical properties (bulk density, hydraulic conductivity, aggregate stability) were significantly (P < 0.05) influenced by land use management. Moderate to high bulk density, very low hydraulic conductivity (HC), and low aggregate stability were observed across land management, suggesting potential inhibition to root penetration, poor aeration, and water infiltration. Improved land management practices such as planting of cover crops either for re-grassing or addition of crop residues could be adopted as conservative options for increasing soil quality and encourage additional soil C. Soil pH decreased with the increase in soil depth in all land uses for both years. A higher soil pH of 6.78 (slightly acidic) was seen in SDS and lower mean 6.0 (moderately acidic) was obtained in CCS at 0-20 cm in 2021. The average mean nitrogen content was rated "very high" (0.81 g kg-1 and 0.69 g kg-1) in 2021 and 2022 respectively, suggesting nitrogen might not be a limiting factor for plant growth in the region. During the 2021 and 2022 study periods, the overall average mean C stock were 12.71 g kg-1 and 15.87 g kg-1 respectively suggesting 3.1 g kg-1 C stock increment in 2022. Soil inorganic C also increased by 9.86 g cm-2 in 2022. The study provided crucial information about how land management use affected soil physico-chemical properties including C stock and suggested that C stock could be improved by adopting appropriate land management use practices. The results fill a data gap in under-studied regions, but also facilitate potential land management practices.


Assuntos
Carbono , Solo , Solo/química , Nigéria , Carbono/análise , Agricultura , Conservação dos Recursos Naturais
11.
J Environ Manage ; 353: 120167, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308995

RESUMO

The quality of soil containing heavy metals (HMs) around nonferrous metal mining areas is often not favorable for plant growth. Three types of plant growth promoting rhizobacteria (PGPR)-assisted ryegrass were examined here to treat Cd, Pb, and Zn contaminated soil collected from a nonferrous metal smelting facility. The effects of PGPR-assisted plants on soil quality, plant growth, and the migration and transformation of HMs were evaluated. Results showed that inter-root inoculation of PGPR to ryegrass increased soil redox potential, urease, sucrase and acid phosphatase activities, microbial calorimetry, and bioavailable P, Si, and K content. Inoculation with PGPR also increased aboveground parts and root length, P, Si, and K contents, and antioxidant enzyme activities. The most significant effect was that the simultaneous inoculation of all three PGPRs increased the ryegrass extraction (%) of Cd (59.04-79.02), Pb (105.56-157.13), and Zn (27.71-40.79), compared to CK control (without fungi). Correspondingly, the inter-root soil contents (%) of total Cd (39.94-57.52), Pb (37.59-42.17), and Zn (34.05-37.28) were decreased compared to the CK1 control (without fungi and plants), whereas their bioavailability was increased. Results suggest that PGPR can improve soil quality in mining areas, promote plant growth, transform the fraction of HMs in soil, and increase the extraction of Cd, Pb, and Zn by ryegrass. PGPR is a promising microbe-assisted phytoremediation strategy that can promote the re-greening of vegetation in the mining area while remediating HMs pollution.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cádmio , Chumbo , Simbiose , Solo/química , Metais Pesados/análise , Bactérias , Biodegradação Ambiental , Zinco , Poluentes do Solo/análise
12.
J Environ Manage ; 351: 119687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061097

RESUMO

Ridge-furrow with full film mulching has been widely applied to increase crop yield and water productivity on the Loess Plateau, but it may stimulate carbon (C) mineralization. How to integrate other technological benefits based on this technology for long-term maintenance of high yield and soil fertility is a pressing issue. With the local farmers' practice (FP) as a control, three integrated soil-crop system management (ISSM) practices integrating fertilizer rates, fertilizer types and planting densities (ISSM-N1, ISSM-N2 and ISSM-MN) were established to improve maize yield and soil quality. Compared with the FP, the maize yield increased by 13.34%, 21.83% and 30.24%, and the soil quality index (SQI) increased by 9.66%, 14.91% and 38.38% for ISSM-N1, ISSM-N2 and ISSM-MN, respectively. However, ISSM-N1 did not significantly increase yield, and ISSM-N2 increased residual soil nitrate and decreased nitrogen (N) partial factor productivity significantly. Compared to the FP, ISSM practices increased soil organic carbon (SOC), labile organic C fractions (LOCFs) and potassium permanganate organic C fractions in the topsoil to varying degrees, but only ISSM-MN reached significant levels for most C fractions. The sensitivity index indicated very easily oxidizable C (24.6%), easily oxidizable C (24.7%), hot-water extractable C (30.8%), labile organic C (24.7%) and particulate organic C (57.3%) were more sensitive than SOC (22.7%). ISSM-MN sequestered significantly higher C than the other treatments. The results of the relative importance analysis and the structural equation model indicated that LOCFs were the direct contributors to yield, while recalcitrant C (CO) was the indirect contributor, revealing the underlying mechanism that CO decomposed to replenish LOCFs and the total N pool with the water soluble C pool as the transit station. Overall, ISSM-MN is the most promising strategy to improve crop yield and soil fertility in the long term on the Loess Plateau.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Carbono/análise , Fertilizantes/análise , Zea mays , Nitrogênio/análise , Água/análise , China
13.
J Sci Food Agric ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319598

RESUMO

BACKGROUND: The utilization of chemical fertilizers is a key measure for maintaining tea yield and quality, but excessive use has negative environmental impacts. The substitution of chemical fertilizer with organic fertilizer has been promoted to sustain crop yield and soil quality. However, knowledge gaps regarding the effects of organic substitution on soil quality and tea yield in tea plantations still exist. RESULTS: A field experiment was conducted to investigate the influence of organic substitution treatments (i.e. 25% partial substitution: biogas slurry + green manure + formula fertilizer, BFG; sheep manure + formula fertilizer, OFF; 100% complete substitution: sheep manure + green manure, OG) on the soil quality, tea yield and quality, and nitrogen utilization efficiency in southwestern China. Results showed that all organic substitution treatments slightly increased soil pH, and significantly increased soil organic matter by 13.22-14.88% compared to conventional fertilization (CF). The BFG treatment was the most effective in enhancing the soil quality index, showing increases of 16.80%, 8.37% and 24.87% higher than the CF, OFF and OG treatments, respectively. Tea yield significantly increased under the BFG, OFF and OG treatments by 11.97%, 13.58% and 5.90% compared to CF, respectively. The BFG treatment increased the amino acid content by 7.78% and decreased the tea polyphenol/amino acid ratio by 6.87%. Additionally, the BFG, OFF and OG treatments greatly increased the nitrogen utilization efficiency of young sprouts by 70.71%, 82.54% and 34.28%, respectively. CONCLUSION: Overall, partial organic substitution could effectively improve soil quality while maintaining tea yield. © 2024 Society of Chemical Industry.

14.
J Sci Food Agric ; 104(14): 8456-8468, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38922898

RESUMO

BACKGROUND: The integration of inorganic and organic fertilizers is increasingly being recommended to address the demand for sustainable cotton cultivation and to mitigate the ecological impacts of reliance on inorganic fertilizers. However, the nuanced effects of this combined fertilization approach on soil quality, cotton growth, yield, and their interaction mechanisms, remain unclear. METHOD: To elucidate this, a 2-year field trial (2022-2023) was conducted, incorporating five fertilization treatments: low inorganic fertilizer (BI1), high inorganic fertilizer (BI2), organic fertilizer (BO), combined low inorganic and organic fertilizer (BIO1), and combined high inorganic and organic fertilizer (BIO2). This study aimed to evaluate the influence of these treatments on soil quality, cotton growth, and yield. RESULTS: The results indicate that the BO treatment significantly enhanced plant height growth rate, and BIO1 treatment increased leaf area index and dry matter accumulation growth rate. Critical soil parameters such as alkali-hydrolyzed nitrogen and available potassium emerged as pivotal determinants of soil quality over the trial period, corresponding to soil quality index (SQI) values of 0.482 and 0.478, and yields of 7506.19 kg ha-1 and 6788.02 kg ha-1, respectively. Water productivity reached optimum levels at SQI values of 0.461 and 0.462, with corresponding efficiencies of 13.31 kg (ha mm)-1 and 12.16 kg (ha mm)-1. Partial least squares path modeling revealed that integrating organic fertilizer with reduced inorganic fertilizer usage significantly boosts cotton yield by enhancing soil quality (path coefficient: 0.842). CONCLUSION: In conclusion, this integrated fertilization strategy not only improves soil health but also increases agricultural productivity. It presents a promising approach for optimizing crop yields while fostering sustainable agricultural practices. © 2024 Society of Chemical Industry.


Assuntos
Produção Agrícola , Fertilizantes , Gossypium , Nitrogênio , Solo , Fertilizantes/análise , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Solo/química , Nitrogênio/metabolismo , Produção Agrícola/métodos , Agricultura/métodos , Potássio/metabolismo , Potássio/análise
15.
Environ Geochem Health ; 46(1): 23, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225518

RESUMO

Using biological methods to improve saline soils is recognized as an eco-friendly and sustainable way. In this study, two indigenous algae YJ-1 and YJ-2 screened from salinized farmland were inoculated into saline soils with different salinization levels to investigate their potential in enhancing soil health by laboratory microcosm experiment. The results showed that individual inoculation of the two algae quickly resulted in the formation of algal crusts, and the chlorophyll content in the saline soils gradually increased with the incubation time. The soil pH decreased significantly from the initial 8.15-9.45 to 6.97-7.56 after 60-day incubation. The exopolysaccharides secretion and the activities of catalase, sucrase, and urease in saline soils also increased. Microalgal inoculation increased soil organic matter storage, while decreasing the available nutrient contents possibly due to the depletion of microalgal growth. PCA and PCC results identified that microalgal biomass as the predominant variable affecting soil quality. Overall, these data revealed the great potential of microalgae in the amelioration of saline soils, especially in pH reduction and enzyme activity enhancement. This study will provide the theoretical foundation for improving saline soils via algalization.


Assuntos
Microalgas , Solo , Solo/química , Biomassa , Clorofila , Fazendas , Microbiologia do Solo
16.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483704

RESUMO

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Solanum tuberosum , Solo , Nitratos , Nitritos , Irã (Geográfico) , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental
17.
Environ Geochem Health ; 46(2): 65, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321197

RESUMO

Rice-based integrated farming system improves the productivity and profitability by recycling resources efficiently. In the sub-humid tropics, rice production without sufficient nutrient replenishment often leads to soil health and fertility degradation. There has been very limited research on soil health and fertility after adopting a multi-enterprising rice-based integrated farming system (IFS), notably in the rice-fish-livestock and agroforestry system, when compared to a conventional farming system (CS). Therefore, the present study analyzed the dynamics of soil properties, soil bacterial community structure and their possible interaction mechanisms, as well as their effect on regulating soil quality and production in IFS, IFSw (water stagnant area of IFS) and CS. The results indicated that soil nutrient dynamics, bacterial diversity indices (Shannon index, Simpson index, Chao 1, ACE and Fisher index) and system productivity were higher in IFSw and IFS compared to CS. Moreover, relative operational taxonomic units of dominant bacterial genera (Chloroflexi, Acidobacteria, Verrucomicrobia, Planctomycetes, Cyanobacteria, Crenarchaeota and Gemmatimonadetes) were also higher in IFSw and IFS compared to CS. Mean soil quality index (SQI) was highest in IFSw (0.780 ± 0.201) followed by IFS (0.770 ± 0.080) and CS (0.595 ± 0.244). Moreover, rice equivalent yields (REY) and rice yields were well correlated with the higher levels of soil biological indices (SQIBiol) in IFS. Overall, our results revealed that rice-based IFS improved the soil health and fertility and ensuing crop productivity through positive interaction with soil bacterial communities and nutrient stoichiometry leading to agroecosystem sustainability.


Assuntos
Oryza , Solo , Solo/química , Clima Tropical , Agricultura/métodos , Bactérias , Microbiologia do Solo
18.
Environ Geochem Health ; 46(5): 147, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578456

RESUMO

The Qinghai-Tibet Plateau, located at the Third Pole and known as the "Asian water tower," serves as a crucial ecological barrier for China. Grasping the soil quality on the Qinghai-Tibet Plateau holds paramount importance for the rational and scientific exploitation of soil resources within the region and is essential for vegetation restoration and ecological reconstruction. This study, conducted in Maqin County, Qinghai Province, collected 1647 soil samples (0-20 cm) within a study area of 6300 km2. Sixteen soil indicators were selected that were split into beneficial (N, P, S, and B), harmful (Cr, Hg, As, Pb, Ni, and Cd), and essential (Cu, Zn, Se, Ga, K, and Ca) elements. The Soil Quality Index (SQI) was computed to assess soil quality across diverse geological contexts, land cover classifications, and soil profiles. The results indicate that the overall SQI in the study area was comparatively high, with most regions having an SQI between 0.4 and 0.6, categorized as moderately to highly satisfactory. Among the different geological backgrounds, the highest SQI was found in the Quaternary alluvium (0.555) and the lowest in the Precambrian Jinshuikou Formation (0.481). Regarding different land-use types, the highest SQI was observed in glacier- and snow-covered areas (0.582) and the lowest in other types of grassland (0.461). The highest SQI was recorded in typical alpine meadow soil (0.521) and the lowest in leached brown soil (0.460). The evaluation results have significant reference value for the sustainable utilization and management of soil in Maqin County, Qinghai Province, China.


Assuntos
Mercúrio , Solo , Humanos , Tibet , China , Atividades Humanas
19.
Environ Geochem Health ; 46(3): 84, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367079

RESUMO

Heavy metals can play an important biological role as micronutrients but also as potentially toxic elements (PTEs). Understanding the natural concentrations of PTEs-Pb and Zn included-in soils allows for the identification and monitoring of contaminated areas and their role in environmental risk assessment. In this study, we aim to determine semi-total or natural and available concentrations of Pb and Zn in topsoils (0-20 cm depth) from 337 samples under native vegetation in the State of Minas Gerais, Brazil. Additionally, we sought to interpret the spatial geochemical variability using geostatistical techniques and quality reference values for these elements in soils were established. The semi-total concentrations were determined by flame and graphite furnace atomic absorption after microwave-assisted nitric acid digestion method. The available concentrations were extracted using the Mehlich-I extractor and determined by atomic absorption spectrometer. Spatial variability was modeled using semivariance estimators: Matheron's classic, Cressie and Hawkins' robust, and Cressie median estimators, the last two being less sensitive to extreme values. This allowed the construction of digital maps through kriging of semi-total Pb and Zn contents using the median estimator, as well as other soil properties by the robust estimator. The dominance of acidic pH and low CEC values reflects highly weathered low-fertility soils. Semi-total Pb contents ranged from 2.1 to 278 mg kg-1 (median: 9.35 mg kg-1) whereas semi-total Zn contents ranged from 2.7 to 495 mg kg-1 (median: 7.7 mg kg-1). The available Pb contents ranged from 0.1 to 6.92 mg kg-1 (median: 0.54 mg kg-1) whereas available Zn contents ranged from 0.1 to 78.2 mg kg-1 (median: 0.32 mg kg-1). The highest Pb and Zn concentrations were observed near Januária, in the northern part of the territory, probably on limestone rocks from the Bambuí group. Finally, the QRVs for Pb and Zn in natural soils were lower than their background values from other Brazilian region and below the prevention values suggested by Brazilian environmental regulations.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Brasil , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Zinco
20.
Environ Geochem Health ; 46(9): 352, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080027

RESUMO

Our study aimed to assess the soil quality in Punjab's Hoshiarpur district through a meticulous analysis of nutrient and elemental composition. Using a variety of analytical techniques, including Neutron Activation Analysis (NAA), external Particle-induced Gamma-ray Emission (PIGE) an Ion beam analysis Technique, and energy-dispersive X-ray fluorescence (ED-XRF), we delved into soil characterization for 22 agricultural soil samples in the Punjab region. Within the NAA framework, utilizing the Pneumatic Carrier Facility and the self-serve facility at Dhruva reactor in Mumbai, a brief 1-min irradiation procedure identified pivotal elements-Na, Mg, V, Al, Mn, and K. Conversely, an extended neutron irradiation process of approximately 4 h within the self-serve facility enabled the estimation of nearly 12 elements, including Rare Earth Elements (REEs), Transition elements, and other significant elements. The external PIGE technique quantified low Z elements (Na, Mg, Al, and Si), contributing to our analytical arsenal. Rigorously validating both NAA and PIGE methodologies, we compared results meticulously against established geological standard reference materials-specifically USGS RGM-1 and USGS AGV-1.Instrumental in elemental analysis, ED-XRF spectroscopy fortified our investigative endeavors by quick assessment of ten crucial elements. The elemental analysis revealed notable accumulations of Mn and Zn in the soil, surpassing the suggested permissible limits, whereas Co, Cr, and Pb were found to be within the recommended thresholds set by WHO/UNEP. Beyond elemental profiling, our study extended to estimate the accumulation levels of various elements utilizing ecological risk factors such as Contamination Factor, Potential Ecological Risk Index, Pollution Load Index, and Geoaccumulation Factor. Our findings highlighted significant accumulation of REEs including La, Sm and Yb.. This evaluation sheds new light on the interplay between soil composition and environmental health, emphasizing the need for advanced accessible agricultural technologies to prevent and forecast contaminant discharge in arable soil. This commitment aligns with our broader goal of advancing sustainable practices in soil management.


Assuntos
Agricultura , Monitoramento Ambiental , Solo , Solo/química , Índia , Monitoramento Ambiental/métodos , Análise de Ativação de Nêutrons , Espectrometria por Raios X/métodos , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA