Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502218

RESUMO

The project Lunar Volatiles Mobile Instrumentation-Extended (LUVMI-X) developed an initial system design as well as payload and mobility breadboards for a small, lightweight rover dedicated for in situ exploration of the lunar south pole. One of the proposed payloads is the Volatiles Identification by Laser Analysis instrument (VOILA), which uses laser-induced breakdown spectroscopy (LIBS) to analyze the elemental composition of the lunar surface with an emphasis on sampling regolith and the detection of hydrogen for the inference of the presence of water. It is designed to analyze targets in front of the rover at variable focus between 300 mm and 500 mm. The spectrometer covers the wavelength range from 350 nm to 790 nm, which includes the hydrogen line at 656.3 nm as well as spectral lines of most major rock-forming elements. We report here the scientific input that fed into the concept and design of the VOILA instrument configuration for the LUVMI-X rover. Moreover, we present the measurements performed with the breadboard laboratory setup for VOILA at DLR Berlin that focused on verifying the performance of the designed LIBS instrument in particular for the detection and quantification of hydrogen and other major rock forming elements in the context of in situ lunar surface analysis.


Assuntos
Lasers , Lua , Análise Espectral/métodos , Água , Hidrogênio
2.
Life Sci Space Res (Amst) ; 34: 53-67, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35940690

RESUMO

The detection and analysis of extraterrestrial life are important issues of space science. Mars is among the most important planets to explore for extraterrestrial life, owing both to its physical properties and to its ancient and present environments as revealed by previous exploration missions. In this paper, we present a comparative study of methods for detecting extraterrestrial life and life-related substances. To this end, we have classified and summarized the characteristics targeted for the detection of extraterrestrial life in solar system exploration mission and the methods used to evaluate them. A summary table is presented. We conclude that at this moment (i) there is no realistic single detection method capable of concluding the discovery of extraterrestrial life, (ii) no single method has an advantage over the others in all respects, and (iii) there is no single method capable of distinguishing extraterrestrial life from terrestrial life. Therefore, a combination of complementary methods is essential. We emphasize the importance of endeavoring to detect extraterrestrial life without overlooking possible alien life forms, even at the cost of tolerating false positives. Summaries of both the targets and the detection methods should be updated continuously, and comparative studies of both should be pursued. Although this study assumes Mars to be a model site for the primary environment for life searches, both the targets and detection methods described herein will also be useful for searching for extraterrestrial life in any celestial environment and for the initial inspection of returned samples.


Assuntos
Marte , Voo Espacial , Exobiologia , Meio Ambiente Extraterreno , Planetas , Sistema Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA