Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(15): e2307484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38050936

RESUMO

Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi9(C9H3O6)9(H2O)9] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.

2.
Small ; 20(35): e2401731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38682736

RESUMO

Natural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles. By utilizing low frequency ultrasound (40 kHz), the assembly of various natural polyphenolic building blocks is successfully induced, allowing for precise control over the particle formation process. The resulting natural polyphenolic nanoparticles possessed excellent in vitro antioxidative abilities and in vivo therapeutic effects in typical oxidative stress models including wound healing and acute kidney injury. This study opens new avenues for the fabrication of functional materials from naturally occurring building blocks, offering promising prospects for future advancements in this field.


Assuntos
Antioxidantes , Nanopartículas , Estresse Oxidativo , Polifenóis , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacologia , Nanopartículas/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização/efeitos dos fármacos , Humanos , Injúria Renal Aguda , Camundongos
3.
Ecotoxicol Environ Saf ; 269: 115801, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064791

RESUMO

In the present day, the widespread presence of lingering contaminants in ecosystems has prompted scientists to develop novel semiconductor nanoarchitectures that assist in photocatalytic reactions mediated by visible light. As a result, we propose to prepare a series of Dy-Mn-O based nano-catalysts using a sonochemical approach utilizing various ionic phases of surfactants as structure-directing agents. In this study, X-ray diffraction (XRD) and Rietveld refinement techniques were used to explore the fundamental effects of surfactants on the compositional-structural features of the materials. In terms of morphological profiles, DyMnO3/Dy2O3 (DM) nanostructures fabricated with Triton X-80 as a structure-directing agent showed the best uniformity with an acceptable size range between 14.14 and 52.35 nm. In the visible-light-driven photocatalytic domain, these nanocomposites provide high responsiveness based on their optical band gap value of 2.0 eV. According to our findings, two individual factors affect dye activity, namely dye type and concentration, which is why a high decomposition efficiency of 78.8% was obtained for 10 ppm Acid violet (AV) using DyMnO3/Dy2O3 nanocomposites after 120 min of exposure to visible light. Furthermore, radical quenching test confirmation confirmed the mechanistic behind the degradation process. This indicates that active species of O2•- and •OH may play a significant role in photocatalysis. As a result of repeated processes over three consecutive cycles, binary DyMnO3/Dy2O3 nanocomposites had an efficiency of 64.4% in removing dyes from the environment, indicating their high stability.


Assuntos
Ecossistema , Nanocompostos , Luz , Nanocompostos/química , Tensoativos , Catálise
4.
Mikrochim Acta ; 191(4): 226, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558261

RESUMO

The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.


Assuntos
Antioxidantes , Nanocompostos , Titânio , Cromatografia Gasosa , Rutina
5.
Small ; 19(24): e2208272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922907

RESUMO

Electrochemical dinitrogen (N2 ) reduction to ammonia (NH3 ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h-1 mgca -1 is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg-1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h-1 mgcat -1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h-1 mgcat -1 and HCOOH formation rate of 2.53 µmol h-1 mg-1 are witnessed under full-cell conditions.

6.
Nanotechnology ; 34(15)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715368

RESUMO

A simple cost-effective sono-chemical method was used for the synthesis of gCN/TeO2-ZnO ternary (2%, 5%, and 10%) nanocomposites, having crystallite size of 12 nm. FE-SEM and transmission electron microscopy images revealed the formation of core-shell type nanocomposites with an average size of 50 nm. Further,E. coliMTCC 443 strain is used as a model organism to study the antibacterial activity of the prepared nanocomposites, using disc diffusion method. Among all the concentrations, 2% gCN/TeO2-ZnO showed maximum zone of inhibition of 23 ± 0.10 mm and its antibacterial activity is like third-generation antibiotic cefotaxime. In addition, the prepared nanocomposites were used as nanofertilizer for the growth of gram seeds Chickpea (Cicer arietinum). The effect of nanocomposite concentration and its sterilising properties are studied on the rate of germination of Chickpea using bothin vitroandin vivostudies (pot study). The root length of the gCN/TeO2-ZnO treated plants showed increase in seed germination (3.30 cm) compared to untreated plants (3.22 cm). In addition, enhancement in the shoot length about 28% is noticed in pot studies, compared to control batch samples. The accumulation of nanomaterial in plant roots was confirmed using SEM-EDX and ICP-MS. Finally, a 14-day experiment was conducted to ascertain the role of gCN/TeO2-ZnO in the controlled release of nutrients from the synthesised nanofertilizer. Owing to its excellent water holding capacity, sterilizing properties, and low toxicity this material can be used as a growth promoter in plants.


Assuntos
Antibacterianos , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/química , Preparações de Ação Retardada , Análise Espectral , Microscopia Eletrônica de Transmissão
7.
J Fluoresc ; 33(6): 2479-2488, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37154848

RESUMO

Manganese oxide nanoparticles (MnO Nps), sonochemical synthesized and characterized in our laboratory, are proposed as fluorescent sensor for selenium (Se) determination. The new methodology has been developed based on the enhancing effect of the Se(IV) on fluorescent emission of MnO Nps. Experimental variables that influence on fluorimetric sensitivity were optimized. The calibration graph using zeroth order regression was linear from 0.189 ng L-1 to 8.00 × 103 µg L-1, with correlation coefficient better than 0.99. Under the optimal conditions, the limits of detection and quantification were of 0.062 ng L-1 and 0.189 ng L-1, respectively. The trueness of the methodology was assessed through standard addition method obtaining recovery near to 100%. This method showed good tolerance to foreign ions, particularly to Se(VI), and was applied to determination of Se(IV) trace in food and drink samples with satisfactory results. With the intention of preserving the environment from harmful effects, a degradation study of the used nanomaterials has been included for their subsequent disposal.


Assuntos
Nanopartículas , Selênio , Selênio/química , Óxidos , Fluorometria , Corantes
8.
J Environ Manage ; 325(Pt A): 116396, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244280

RESUMO

In this work, nanomaterials of the SrMoO4/g-C3N4 heterostructure were synthesized in a single step by the sonochemical method with controlled temperatures. Structural and morphological investigations indicate the formation of heterojunctions, revealing the presence of g-C3N4 (CN) in the heterostructures and an interface region between the phases. Optical analyzes show broadening of the wavelength absorption range and a decrease in the photoluminescence (PL) intensity of the heterojunctions compared to the CN emission spectrum, proving a decrease in the recombination of the photogenerated charges. The results of the photocatalytic tests indicate that the insertion of CN promoted photocatalytic degradation of the Methylene Blue (MB), Rhodamine B (RhB) and Crystal Violet (CV) organic contaminants, up to 99.58%, 100% and 98.65%, respectively. The mixture of dyes used and reuse cycles was performed to analyze the applicability of the compounds in a real situation.

9.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985612

RESUMO

Ultrasounds are commonly used in medical imaging, solution homogenization, navigation, and ranging, but they are also a great energy source for chemical reactions. Sonochemistry uses ultrasounds and thus realizes one of the basic concepts of green chemistry, i.e., energy savings. Moreover, reduced reaction time, mostly using water as a solvent, and better product yields are among the many factors that make ultrasound-induced reactions greener than those performed under conventional conditions. Sonochemistry has been successfully implemented for the preparation of various materials; this review covers sonochemically synthesized nanoporous materials. For instance, sonochemical-assisted methods afforded ordered mesoporous silicas, spherical mesoporous silicas, periodic mesoporous organosilicas, various metal oxides, biomass-derived activated carbons, carbon nanotubes, diverse metal-organic frameworks, and covalent organic frameworks. Among these materials, highly porous samples have also been prepared, such as garlic peel-derived activated carbon with an apparent specific surface area of 3887 m2/g and MOF-177 with an SSA of 4898 m2/g. Additionally, many of them have been examined for practical usage in gas adsorption, water treatment, catalysis, and energy storage-related applications, yielding satisfactory results.

10.
Environ Res ; 215(Pt 1): 114294, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113573

RESUMO

The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.


Assuntos
Poluentes Ambientais , Metais Pesados , Ozônio , Poluentes Químicos da Água , Purificação da Água , Amônia , Eletrocoagulação/métodos , Humanos , Fósforo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144593

RESUMO

In comparison with the first-principles calculations mostly using partial differential equations (PDEs), numerical simulations with modeling by ordinary differential equations (ODEs) are sometimes superior in that they are computationally more economical and that important factors are more easily traced. However, a demerit of ODE modeling is the need of model validation through comparison with experimental data or results of the first-principles calculations. In the present review, examples of ODE modeling are reviewed such as sonochemical reactions inside a cavitation bubble, oriented attachment of nanocrystals, dynamic response of flexoelectric polarization, ultrasound-assisted sintering, and dynamics of a gas parcel in a thermoacoustic engine.

12.
Environ Res ; 197: 111021, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774014

RESUMO

Neonicotinoids sonochemical oxidation at high-frequency ultrasound (MHz range) has been carried out in ultrapure and natural surface-water matrices (river, reservoir and wastewater treatment plant effluent). To evaluate the influence of the operating variables, that is initial pollutant concentration, ultrasound frequency, ultrasound power, and pulse-stop time a Box-Behnken experimental design was planned. Optimal results were obtained using a frequency of 578 kHz, a power of 40 W L-1, with a pollutant concentration of 1 µM (for each pesticide), and using a pulse-stop time of 100 ms. The experimental data adjustment using the Langmuir-Hinshelwood heterogeneous kinetic model showed that neonicotinoids oxidation was carried out in the bubble-liquid interface by the attack of hydroxyl radicals. Experiments performed in the presence of radical scavengers, that is, methanol, ethanol and tert-butyl alcohol corroborated this reaction mechanism. The influence of some environmental conditions such as pH, presence of soluble inorganic species (Cl-, SO42-, NO3-, HPO42-, HCO3-) and soluble organic species (humic acids content) were established. Finally, the aqueous matrix's influence was investigated for three natural surface water cases, and the results were rationalized according to the main water physicochemical characteristics.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Substâncias Húmicas , Radical Hidroxila , Neonicotinoides , Oxirredução , Poluentes Químicos da Água/análise
13.
Environ Res ; 202: 111517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216609

RESUMO

Tartrazine degradation was investigated by electrochemical and sonochemical oxidation processes. Anodic oxidation was carried out using boron-doped diamond (BDD) electrodes. The influence of current density and dye initial concentration on the removal of tartrazine from water was analyzed. The experimental results indicate that total removal of tartrazine was obtained, and Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removals of up to 94.4% and 72.8% were achieved, respectively. To optimize the process, the pollutant removal percentage, the kinetic rate constant, and the TOC removal efficiency were chosen as target variables. Moreover, sonochemical oxidation experiments at a high-frequency range of cavitation (up to 1 MHz) were performed to establish the influence of three different operating variables, namely ultrasound frequency (0.5-1.1 MHz), ultrasound power (2.0-26.6 W ⋅L-1), and pulse-stop ratio (5:1-1:1). The process was also analyzed in terms of kinetics and energy costs. The kinetics resulted to be three times faster for the electrochemical process. However, the calculated energy costs were very similar, at least at long treatment times. Finally, the influence of three aqueous matrices was investigated. According to the experimental results, the natural occurrence of chloride and/or nitrate ions in water strongly conditions the rate of the process, although at least 90% of tartrazine removal was achieved within the first 50 min of treatment.


Assuntos
Tartrazina , Poluentes Químicos da Água , Boro , Diamante , Oxirredução , Água , Poluentes Químicos da Água/análise
14.
Microchem J ; 164: 105972, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33518809

RESUMO

In this study, zinc sulfide nanoparticles were loaded on reduced graphene oxide (ZnS NPs/rGO) using simple sonochemical method. The nanocomposite was characterized using different morphological and electrochemical techniques such as TEM, SEM, PXRD, EDX, Raman spectroscopy, FTIR, N2-adsorption-desorption, CV, and EIS. The ZnS NPs/rGO modified glassy carbon electrode (GCE) was used to simultaneously estimate hydroxychloroquine (HCQ) and daclatasvir (DAC) in a binary mixture for the first time. The modified nanocomposite exhibited good catalytic activity towards HCQ and DAC detection. In addition, it showed higher sensitivity, good selectivity and stability; and high reproducibility towards HCQ and DAC analysis. The activity of the modified electrode was noticeably improved due to synergism between ZnS NPs and rGO. Under optimum conditions of DPV measurements, the anodic peak currents (Ipa) were obviously increased with the increase of HCQ and DAC amounts with linear ranges of 5.0-65.0 and 7.0-65.0 nM with LODs of 0.456 and 0.498 nM for HCQ and DAC, respectively. The ZnS NPs/ rGO modified GCE was used to quantify HCQ and DAC in biological fluids with recoveries of 98.7-102.7% and 96.9-104.5% and RSDs of 1.89-3.57% and 1.91-3.70%, respectively.

15.
J Environ Manage ; 283: 111977, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33517051

RESUMO

Remediation of Poly- and perfluoroalkyl substances (PFASs) in the environment has rapidly increased due to growing concerns of environmental contamination and associated adverse toxicological effects on wildlife and humans due to bioaccumulation and extreme persistence. Although, PFASs are highly recalcitrant to conventional water treatment processes, there are some effective techniques available. Those techniques involve exceedingly high costs due to high energy use, and high capital or operational costs. Thus, most remediation techniques have limitations in field applications even though the laboratory scale experiments are promising. As a result of stringent new health and environmental regulatory standards are being established, development of suitable water treatment methodology is more challenging. Most of the separation and destruction techniques have their own limitations in field applications while the biological approaches to treat PFASs are extremely limited and are not currently considered as viable. In this review, extra consideration is given to novel advanced techniques for wide array of PFAS classes including short chain PFAS removal, and compare their efficiencies, effectiveness, energy use, sustainability, cost, and simplicity in laboratory scale to field applications. Electrochemical, sonochemical, advanced oxidation processers (AOPs) and plasma together with novel hybrid techniques are considered as effective approaches for PFASs removal and have shown promising results for long chain and some short chain PFASs, as well as extremely persistent per-fluoro alkyl acids (PFAAs). Therefore, it is essential to better understand the removal mechanisms to optimise the advanced treatment processes like hybrid techniques because, the unique physicochemical characteristics of various PFASs impose difficult challenges. Careful selection of a combined effective treatment methodology in an integrated processing unit, would be a revolutionary approach for complete elimination of PFASs from the environment. Considering the site-specific water quality parameters together with community perspectives will also make it more viable in real world field applications.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Humanos , Poluentes Químicos da Água/análise , Qualidade da Água
16.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684747

RESUMO

While the sonochemical grafting of molecules on silicon hydride surface to form stable Si-C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si-H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si-C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author's knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.

17.
J Food Sci Technol ; 58(11): 4263-4269, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538909

RESUMO

Sonochemistry was applied in the last few years for coating surfaces of various substrates for imparting desired properties to the surface. In the current paper the coating of cucumbers with NaCl nanoparticles and apples with honey nanoparticles was accomplished by applying the sonochemical method. In both coating the nanoparticles were deposited from aqueous solutions. The products were characterized by Inductively coupled plasma, Dynamic light scattering, Scanning electron microscopy, and Nuclear magnetic resonance.

18.
Mikrochim Acta ; 187(8): 459, 2020 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686000

RESUMO

Graphitic carbon nitrides supported cuprous oxide architecture is reported as an efficient electrode material for supercapacitors, especially due to its high charge-transfer conductivity of the electrochemical devices. Herein, we present an electrochemical sensor to specifically detect 8-hydroxy-2'-deoxyguanosine (8-HDG) oxidative stress biomarker using graphitic carbon nitrides that decorate a cuprous oxide cubes modified electrode. The fabricated electrochemical sensor was characterized and proved by electrochemical methods, EDX, FESEM, and amperometry (i-t). In the presence of 8-hydroxy-2'-deoxyguanosine (8-HDG), the effective interaction between graphitic carbon nitrides and 8-HDG favors the accumulation on the Cu2O/g-C3N4/GCE, which increases the electrocatalytic property and amperometric response. The proposed electrochemical sensor exhibits a wide linear range for 8-HDG in 0.1 M phosphate buffer (pH 7.0) from 25 nM to 0.91 mM, and the limit of detection (LOD) is 4.5 nM. The stability of the Cu2O/g-C3N4/GCE is improved when stored at 4 °C. The repeatability and reproducibility of this electrochemical sensor is good and the sensor retains its  current response for 8-HDG detection also after long time storage. The modified sensor proved high selectivity and sensitivity for 8-HDG, which made it possible to determine 8-HDG in biological samples. Furthermore, the Cu2O/g-C3N4/GCE offered a favorable electron transfer between the Cu2O/g-C3N4 and the electrode interface compared to Cu2O/GCE, g-C3N4/GCE, and unmodified GCE. Graphical abstract Electrochemical detection of oxidative stress marker based on Cu2O@g-C3N4 materials modified electrode.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/sangue , 8-Hidroxi-2'-Desoxiguanosina/urina , Cobre/química , Grafite/química , Nanocompostos/química , Compostos de Nitrogênio/química , Biomarcadores/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
19.
J Environ Manage ; 261: 110156, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148258

RESUMO

The degradation of four representative neonicotinoids, namely Thiamethoxam, Imidacloprid, Acetamiprid and Thiacloprid, was carried out by the sequential association of different advanced oxidation processes, including Ozonation, Electro-chemical Oxidation, Ultrasound, Ultraviolet radiation, and their different possible associations. There are no published papers in the literature on the removal of this type of insecticides through these associated oxidation processes. Single oxidation processes did not achieve total pollutants removal in less than 3 h (only UV radiation treatment obtain a total removal of Thiamethoxan in 150 min, but with mineralization below 15% TOC). For double sequential processes, Electro-oxidation-Ozone treatment obtains a total removal of Imidacloprid in 120 min and an increase of mineralization to 50% TOC. Three or four sequential processes are recommended to improve degradation and mineralization rates in a significant way, Electro-oxidation-Ozone-UV treatment obtains a total removal of Thiamethoxan in 80 min with mineralization over 75% TOC. These results confirm important synergistic effects which were quantified. The global trend indicates that Thiamethoxam is the most oxidizable neonicotinoid, whereas Acetamiprid is the most recalcitrant compound. The degradation rate of each neonicotinoid followed pseudo-first-order kinetics and the different oxidation pathways were also quantified from a kinetic point of view.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cinética , Neonicotinoides , Oxirredução , Raios Ultravioleta
20.
Mikrochim Acta ; 187(1): 71, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31858256

RESUMO

A room temperature ultrasound-assisted method was applied to synthesize L- and D-cysteine-capped CdSe quantum dots (QDs). The QDs were characterized by XRD, FT-IR, and TEM. They have diameters of 5-7 nm and are shown to be viable probes for highly selective chiral recognition of tryptophan (Trp) enantiomers by fluorometry. The green fluorescence of the capped QDs (with excitation/emission maxima at 380/527 nm and 380/520 nm for L-Cys and D-Cys QDs, respectively) is differently quenched by D- and L-Trp in a high selective manner, with negligible interference by other species. The calibration plots and corresponding Stern-Volmer plots for both Trp enantiomers were investigated by two different approaches: In the first, each individual enantiomer was tested. In the second, each enantiomer was tested in the presence of a 100-folds excess of the other enantiomer. The detection limits for the recognition of L- and D-Trp are 4.2 and 4.7 nM, respectively, for the first approach. In the presence of the other enantiomer, the LODs are 4.4 and 4.8 nM. The linear range extends from 0.1 to 15 µM for both enantiomers. Graphical abstractSchematic representation of tryptophan (Trp) chiral recognition process. The fluorescence (green, ON) of D- and L-Cys (cysteine)-capped CdSe QDs is quenched (black, OFF) through a preferential and selective interaction with L- and D-Trp, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA