Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262246

RESUMO

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Fosfatases de Especificidade Dupla , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ferroptose/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
2.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277756

RESUMO

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia
3.
J Cell Mol Med ; 28(14): e18533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034442

RESUMO

Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.


Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Sorafenibe , Superóxido Dismutase-1 , Serina-Treonina Quinases TOR , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Vírus da Hepatite B/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Ditiocarb/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Transativadores , Proteínas Virais Reguladoras e Acessórias
4.
Cancer Sci ; 115(2): 465-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991109

RESUMO

NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3ß that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Apoptose , Autofagia , Proliferação de Células , Linhagem Celular Tumoral , Receptor Nuclear Órfão DAX-1
5.
Cancer Sci ; 115(10): 3256-3272, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038928

RESUMO

Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Sorafenibe , Sorafenibe/farmacologia , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Animais , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Acetiltransferases/metabolismo , Acetiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Masculino , Acetilação/efeitos dos fármacos , Feminino
6.
Scand J Gastroenterol ; 59(6): 730-736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426342

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most malignant cancer worldwide. Sorafenib (SRF) is a common therapeutic drug used for patients with advanced HCC. Nevertheless, drug resistance frequently occurs in patients treated with sorafenib. Glycyrrhizic acid (GRA) is a natural compound that is identified to exhibit anti-cancer effects. In this work, we aimed to investigate the effects of GRA on SRF-resistant HCC cells and the potential regulatory mechanisms. METHODS: We established SRF-resistant HCC cell lines and administrated GRA treatment. We performed CCK-8 and colony formation experiments to detect cell proliferation. The accumulation of lipid reactive oxygen species (ROS) and iron levels were measured to evaluate ferroptosis. The protein levels of ferroptosis suppressor glutathione peroxidase 4 (GPX4) and SLC7A11, and the activation of AKT and mTOR were measured with western blotting assay. RESULTS: GRA treatment notably suppressed the viability and proliferation of SRF-resistant HCC cells. SRF-resistant HCC cells exhibited repressed ferroptosis level activated AKT/mTOR cascade, and GRA treatment reversed these effects. Inhibition of ferroptosis and activation of mTOR reversed the anti-proliferation effects of GRA on SRF-resistant HCC cells. CONCLUSION: Treatment with GRA could effectively reverse the SRF resistance of HCC cells via inducing ferroptosis and inactivating the AKT/mTOR cascade.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Ácido Glicirrízico , Neoplasias Hepáticas , Transdução de Sinais , Sorafenibe , Serina-Treonina Quinases TOR , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Ferroptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
7.
J Biochem Mol Toxicol ; 38(3): e23666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375688

RESUMO

Exosomal microRNAs (miRNAs) derived from cancer cell is an important regulatory molecule that mediates the formation of tumor drug resistance, but function and mechanisms of exosomal miRNA in sorafenib resistance of hepatocellular carcinoma (HCC) have not been studied. We detected the level and prognosis of miR-93 in HCC by using TCGA HCC database. For confirming the extracted exosome, transmission electron microscopy was used. Cy3-labeled miR-93 and quantitative reverse transcription-polymerase chain reaction were used to prove that exosomal miR-93 derived from HCC cell can be transferred to sensitive HCC cells. CCK8, EdU, and flow cytometer assay were used to confirm the function of exosomal miR-93 in sorafenib resistance of HCC. Bioinformatics software and luciferase reporter assay was used to confirm the direct targeting relationship between PTEN and miR-93. Western blot was used to validate downstream pathways. We found that miR-93 is overexpressed and a prognostic risk factor for the HCC patients. miR-93 was overexpressed in sorafenib resistant HCC cells compared with sensitive cells, and miR-93 contributed to sorafenib resistance of HCC cells through targeting PTEN. miR-93 was enriched in exosomes that secreted from sorafenib resistant cells, and these exosomal miR-93 promote the spread of sorafenib resistant through targeting PTEN to reactivate PI3K/AKT pathway. Therefore, miR-93 can act as a potential therapeutic target for advanced patients with acquired sorafenib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
8.
Acta Pharmacol Sin ; 45(8): 1701-1714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38609562

RESUMO

Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Sorafenibe , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Oligonucleotídeos/farmacologia
9.
Mol Ther ; 31(7): 2169-2187, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37211762

RESUMO

Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Esfingomielina Fosfodiesterase/farmacologia , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Autofagia , Resistência a Medicamentos , Punções
10.
Biochem Genet ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212854

RESUMO

Sorafenib resistance has become a big hurdle for treating advanced HCC; thus, identifying novel targets to overcome sorafenib resistance is of great importance. Thanks to the massive progress in the sequencing and data analysis, high-throughput screening of novel targets in HCC development has been extensively used in recent years. In present study, we harnessed the public dataset and aimed to identify novel targets related to sorafenib resistance in HCC via bioinformatics analysis and in vitro validation. This study examined three GEO datasets (GSE140202, GSE143233, GSE182593) and identified 20 common DEGs. Functional enrichment analysis suggested these DEGs might play a role in regulating drug resistance pathways. PPI network analysis pinpointed 14 hub genes, with EFNB2 showing high connectivity to other genes. Subsequent in vitro experiments demonstrated that EFNB2 was up-regulated in sorafenib-resistant HCC cells. EFNB2 suppression sensitized HepG2 and Huh7 sorafenib-resistant cells. Furthermore, EFNB2 knockdown increased caspase-3/-7 activities and hindered EMT in sorafenib-resistant HCC cells. Conversely, EFNB2 overexpression promoted sorafenib resistance, decreased caspase-3/-7 activity, and enhanced EMT in HCC cells. Overall, this study identified 14 promising genes potentially linked to sorafenib resistance in HCC, with EFNB2 emerging as a potential contributor to this resistance mechanism.

11.
Cancer Sci ; 114(6): 2386-2399, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919759

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, whose initiation and development are driven by alterations in driver genes. In this study, we identified four driver genes (TP53, PTEN, CTNNB1, and KRAS) that show a high frequency of somatic mutations or copy number variations (CNVs) in patients with HCC. Four different spontaneous HCC mouse models were constructed to screen for changes in various kinase signaling pathways. The sgTrp53 + sgPten tumor upregulated mTOR and noncanonical nuclear factor-κB signaling, which was shown to be strongly inhibited by rapamycin (an mTOR inhibitor) in vitro and in vivo. The JAK-signal transducer and activator of transcription (STAT) signaling was activated in Ctnnb1mut + sgPten tumor, the proliferation of which was strongly inhibited by napabucasin (a STAT3 inhibitor). Additionally, mTOR, cytoskeleton, and AMPK signaling were upregulated while rapamycin and ezrin inhibitors exerted potent antiproliferative effects in sgPten + KrasG12D tumor. We found that JAK-STAT, MAPK, and cytoskeleton signaling were activated in sgTrp53 + KrasG12D tumor and the combination of sorafenib and napabucasin led to the complete inhibition of tumor growth in vivo. In patients with HCC who had the same molecular classification as our mouse models, the downstream signaling pathway landscapes associated with genomic alterations were identical. Our research provides novel targeted therapeutic options for the clinical treatment of HCC, based on the presence of specific genetic alterations within the tumor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Variações do Número de Cópias de DNA/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Linhagem Celular Tumoral
12.
Cancer Sci ; 114(2): 477-489, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35642354

RESUMO

Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Citocromos c/metabolismo , Proteínas de Transporte , Colesterol/metabolismo , Homeostase , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Membrana Transportadoras/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
13.
Biochem Biophys Res Commun ; 656: 1-9, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-36940637

RESUMO

Sorafenib has been used to enhance the survival outcome of hepatocellular carcinoma (HCC) patients. But, occurrence resistance to sorafenib subtracts from its therapeutic benefits. Herein, we identified that FOXM1 was markedly upregulated in both tumor samples and sorafenib-resistant HCC tissues. We also demonstrated that patients with decreased FOXM1 expression had longer overall survival (OS) and progression-free survival (PFS) in the cohort of sorafenib-treated patients. For HCC cells resistant to sorafenib, the IC50 value of sorafenib and the expression of FOXM1 were increased. In addition, Downregulation of FOXM1 expression alleviated the occurrence of resistance to sorafenib and reduced the proliferative potential and viability of HCC cells. Mechanically, the suppression of the FOXM1 gene resulted in the downregulation of KIF23 levels. Moreover, downregulation of FOXM1 expression reduced the levels of RNA polymerase II (RNA pol II) and histone H3 lysine 27 acetylation (H3K27ac) on the KIF23 promoter, further epigenetically silencing the production of KIF23. More intriguingly, our results similarly revealed that FDI-6, a specific inhibitor of FOXM1, suppressed the proliferation of HCC cells resistant to sorafenib, as well as upregulation of FOXM1 or KIF23 abolished this effect. In addition, we found that FDI-6 combined with sorafenib significantly improved the therapeutic effect of sorafenib. Collectively, the present results revealed that FOXM augments sorafenib resistance and enhances HCC progression by upregulating KIF23 expression via an epigenetic mechanism, and targeting FOXM1 can be an effective treatment for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Ativação Transcricional , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
14.
Mol Cell Probes ; 67: 101877, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442661

RESUMO

BACKGROUNDS: Sorafenib-resistance leads to poor prognosis and high mortality in advanced hepatocellular carcinoma (HCC), and this study aims to investigate the functional role of a circular RNA ITCH (circITCH) in regulating the sorafenib-resistance of HCC and its underlying mechanisms. METHODS: The expression of circITCH in HCC tissues and cell lines were detected by performing quantitative real-time polymerase chain reaction. Sorafenib-resistant HCC cells were transfected with PLCDH-circITCH to upregulate circITCH and intervened with sorafenib, and MTT assay, flow cytometry and transwell assay were used to test the cell viability, apoptosis and migration ability, respectively. The downstream target of circITCH were explored by using bioinformatic analysis, dual luciferase reporter system and Western blot. RESULTS: CircITCH was significantly down-regulated in HCC tissues and cell lines, compared with their normal counterparts. Especially, in contrast with the sorafenib-sensitive HCC cells, continuous sorafenib treatment decreased the expression levels of circITCH in the sorafenib-resistant HCC cells. Overexpression of circITCH increased sorafenib-sensitivity, promoted cell apoptosis and reduced cell migration abilities in the sorafenib-resistant HCC cells. Mechanically, circITCH elevated PTEN expression to inactivate the PI3K/Akt signals through negatively regulating miR-20b-5p in HCC, and upregulating miR-20b-5p or inhibiting PTEN abolished the enhancing effect of circITCH overexpression on sorafenib-induced cytotoxicity in sorafenib-resistant HCC cells. CONCLUSION: Taken together, this study proves that circITCH enhances sorafenib-sensitivity in sorafenib-resistant HCC cells via regulating the miR-20b-5p/PTEN/PI3K/Akt signaling cascade, which highlights the potential value of circITCH as a target for enhancing the sorafenib-sensitivity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , RNA Circular , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/genética
15.
Mol Biol Rep ; 50(8): 6399-6413, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326750

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer worldwide, and sorafenib is a first-line drug for the treatment of advanced liver cancer. Resistance to sorafenib has become a major challenge in the treatment of hepatocellular carcinoma, however, studies have shown that metformin can promote ferroptosis and sorafenib sensitivity. Therefore, the aim of this study was to investigate the promotion of ferroptosis and sorafenib sensitivity by metformin via ATF4/STAT3 in hepatocellular carcinoma cells. METHODS: Hepatocellular carcinoma cells Huh7 and Hep3B and induced sorafenib resistance (SR) Huh7/SR and Hep3B/SR cells were used as in vitro cell models. Cells were injected subcutaneously to establish a drug-resistant mouse model. CCK-8 was used to detect cell viability and sorafenib IC50. Western blotting was used to detect the expression of relevant proteins. BODIPY staining was used to analyze the lipid peroxidation level in cells. A scratch assay was used to detect cell migration. Transwell assays were used to detect cell invasion. Immunofluorescence was used to localize the expression of ATF4 and STAT3. RESULTS: Metformin promoted ferroptosis in hepatocellular carcinoma cells through ATF4/STAT3, decreased sorafenib IC50, increased ROS and lipid peroxidation levels, decreased cell migration and invasion, inhibited the expression of the drug-resistant proteins ABCG2 and P-GP in hepatocellular carcinoma cells, and thus inhibited sorafenib resistance in hepatocellular carcinoma cells. Downregulating ATF4 inhibited the phosphorylated nuclear translocation of STAT3, promoted ferroptosis, and increased the sensitivity of Huh7 cells to sorafenib. Metformin was also shown in animal models to promote ferroptosis and sorafenib sensitivity in vivo via ATF4/STAT3. CONCLUSION: Metformin promotes ferroptosis and sensitivity to sorafenib in hepatocellular carcinoma cells via ATF4/STAT3, and it inhibits HCC progression.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Metformina , Animais , Camundongos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
16.
J Nanobiotechnology ; 21(1): 154, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202772

RESUMO

BACKGROUND: Sorafenib resistance poses therapeutic challenges in HCC treatment, in which cancer stem cells (CSCs) plays a crucial role. CRISPR/Cas9 can be utilized as a potential technique to overcome the drug resistance. However, a safe, efficient and target specific delivery of this platform remains challenging. Extracellular vesicles (EVs), the active components of cell to cell communication, hold promising benefits as delivery platform. RESULTS: Herein we report the normal epithelial cell -derived EVs engineered with HN3(HLC9-EVs) show competing tumor targeting ability. Anchoring HN3 to the membrane of the EVs through LAMP2, drastically increased the specific homing of HLC9-EVs to GPC3+Huh-7 cancer cells rather than co-cultured GPC3-LO2 cells. Combination therapy of HCC with sorafenib and HLC9-EVs containing sgIF to silence IQGAP1 (protein responsible for reactivation of Akt/PI3K signaling in sorafenib resistance) and FOXM1 (self-renewal transcription factor in CSCs attributed to sorafenib resistance), exhibited effective synergistic anti-cancer effect both in vitro and in vivo. Our results also showed that disruption of IQGAP1/FOXM1 resulted in the reduction of CD133+ population that contribute to the stemness of liver cancer cells. CONCLUSION: By reversing sorafenib resistance using combination therapeutic approach with engineered EVs encapsulated CRISPR/Cas9 and sorafenib, our study foreshadows a path for a better, accurate, reliable and successful anti-cancer therapy in the future.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Glipicanas/metabolismo , Proteína Forkhead Box M1/metabolismo
17.
Altern Lab Anim ; 51(5): 301-312, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37555318

RESUMO

Liver cancer is the third leading cause of cancer-related mortality, and hepatocellular carcinoma (HCC) is the most common form of liver cancer, and it usually occurs in the setting of chronic liver disease and cirrhosis. For patients with advanced HCC, systemic treatment is the first choice - however, resistance occurs frequently. Sorafenib was the first tyrosine kinase inhibitor approved for advanced HCC, and resistance to the therapy is a serious concern. When sorafenib therapy fails in a patient, it can be challenging to decide whether they can undergo a second-line therapy, and to determine which therapy they will be able to tolerate. Thus, physiologically relevant in vitro preclinical models are crucial for screening potential therapies, and 3-D tumour spheroids permit studies of tumour pathobiology. In this study, a drug-resistant 3-D tumour spheroid model was developed, based on sorafenib-resistant hepatocellular carcinoma cells, LX2 stellate cells and THP-1 monocytes. Model tumour spheroids that were formed with the sorafenib-resistant cells demonstrated lower diffusion of doxorubicin and exhibited increased resistance to regorafenib. Moreover, in the sorafenib-resistant spheroids, there was increased presence of CD68-positive cells and a reduction in inflammatory marker secretion. The sorafenib-resistant cell line-derived spheroids also showed a higher expression of FGF-19, PDGF-AA and GDF-15, which are known to be involved in malignancies. This multi-cell type spheroid model represents a potentially useful system to test drug candidates in a microenvironment that mimics the drug-resistant tumour microenvironment in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834680

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Hepatitis B virus (HBV) infection accounts for nearly 50% of HCC cases. Recent studies indicate that HBV infection induces resistance to sorafenib, the first-line systemic treatment for advanced HCC for more than a decade, from 2007 to 2020. Our previous research shows that variant 1 (tv1) of proliferating cell nuclear antigen clamp-associated factor (PCLAF), overexpressed in HCC, protects against doxorubicin-induced apoptosis. However, there are no reports on the relevance of PCLAF in sorafenib resistance in HBV-related HCC. In this article, we found that PCLAF levels were higher in HBV-related HCC than in non-virus-related HCC using bioinformatics analysis. Immunohistochemistry (IHC) staining of clinical samples and the splicing reporter minigene assay using HCC cells revealed that PCLAF tv1 was elevated by HBV. Furthermore, HBV promoted the splicing of PCLAF tv1 by downregulating serine/arginine-rich splicing factor 2 (SRSF2), which hindered the inclusion of PCLAF exon 3 through a putative cis-element (116-123), "GATTCCTG". The CCK-8 assay showed that HBV decreased cell susceptibility to sorafenib through SRSF2/PCLAF tv1. HBV reduced ferroptosis by decreasing intracellular Fe2+ levels and activating GPX4 expression via the SRSF2/PCLAF tv1 axis, according to a mechanism study. Suppressed ferroptosis, on the other hand, contributed to HBV-mediated sorafenib resistance through SRSF2/PCLAF tv1. These data suggested that HBV regulated PCLAF abnormal alternative splicing by suppressing SRSF2. HBV caused sorafenib resistance by reducing ferroptosis via the SRSF2/PCLAF tv1 axis. As a result, the SRSF2/PCLAF tv1 axis may be a prospective molecular therapeutic target in HBV-related HCC, as well as a predictor of sorafenib resistance. The inhibition of the SRSF2/PCLAF tv1 axis may be crucial in the emergence of systemic chemotherapy resistance in HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Vírus da Hepatite B , Neoplasias Hepáticas/metabolismo , Fatores de Processamento de Serina-Arginina , Sorafenibe/farmacologia
19.
Toxicol Mech Methods ; 33(1): 47-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35592903

RESUMO

Hepatocellular carcinoma (HCC) constitutes a major global health threat due to the high incidence and mortality. Sorafenib is known as the first-line medication for advanced HCC; however, it only extends the limited benefit for HCC patients as the development of acquired resistance. Withaferin A exerts broad pharmaceutical applications in several cancers. However, its effects on HCC cell metastatic potential and sorafenib resistance remain elusive. Here, we corroborated that Withaferin A greatly restrained cell viability, invasion, vasculogenic mimicry (VM) formation, and VE-cadherin levels in HepG2 and SNU449 cells. Moreover, Withaferin A sensitized sorafenib (SR)-resistant HCC cells to sorafenib. In striking contrast to the parental cells, lower ferroptosis was observed in SR-resistant cells as the lower ROS, MDA, and higher intracellular GSH levels in SR-resistant cells. Of interest, Withaferin A enhanced ferroptosis in SR-resistant cells, which was reversed by ferroptosis antagonist liproxstation-1. Notably, Withaferin A elevated Keap1 expression to mitigate Nrf2 signaling activation-mediated epithelial to mesenchymal transition (EMT) and ferroptosis-related protein xCT expression. Importantly, blockage of the Keap1/Nrf2 signaling overturned Withaferin A-evoked ferroptosis and facilitated sorafenib resistance. In addition, knockdown of Keap1 antagonized the inhibitory efficacy of Withaferin A on HCC cell viability, invasion, and VM formation. Consequently, Withaferin A may attenuate the metastatic potential and sorafenib resistance by regulating Keap1/Nrf2-associated EMT and ferroptosis. Thus, Withaferin A may serve as a promising agent for HCC therapy, especially for advanced HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos
20.
Cancer Sci ; 113(5): 1601-1612, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35253323

RESUMO

Sorafenib is a multikinase inhibitor for the standard treatment of advanced liver cancer patients. However, acquired resistance to sorafenib is responsible for a poor prognosis. Therefore, uncovering the molecular mechanisms underlying sorafenib sensitization can provide biomarkers for sorafenib treatment and improve sorafenib activity in a precise medication. Here, we report that epigenetic suppression of Dicer by the HOXB-AS3/EZH2 complex is responsible for sorafenib resistance. We observed that Dicer expression is inversely correlated with EZH2 levels, HOXB-AS3 expression, sorafenib resistance, and cancer stem cell properties in liver cancer patients. Furthermore, ectopic expression of Dicer induced liver cancer cells resensitization to sorafenib. Mechanistically, we found HOXB-AS3 physically interacts with EZH2 and recruits EZH2 to the Dicer promoter, resulting in epigenetic suppression of Dicer expression. These findings reveal that HOXB-AS3/EZH2 complex-mediated Dicer suppression plays an important role in sorafenib resistance and cancer stemness and provide potential therapeutic strategies for diagnosing and treating liver cancer patients.


Assuntos
Carcinoma Hepatocelular , RNA Helicases DEAD-box/genética , Neoplasias Hepáticas , RNA Longo não Codificante , Ribonuclease III/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Sorafenibe/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA