Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833315

RESUMO

Cryogenic atom probe tomography (cryo-APT) is being developed to enable nanoscale compositional analyses of frozen liquids. Yet, the availability of readily available substrates that allow for the fixation of liquids while providing sufficient strength to their interface is still an issue. Here, we propose the use of 1-2-µm-thick binary alloy film of gold-silver sputtered onto flat silicon, with sufficient adhesion without an additional layer. Through chemical dealloying, we successfully fabricate a nanoporous substrate, with an open-pore structure, which is mounted on a microarray of Si posts by lift-out in the focused-ion beam system, allowing for cryogenic fixation of liquids. We present cryo-APT results obtained after cryogenic sharpening, vacuum cryo-transfer, and analysis of pure water on the top and inside the nanoporous film. We demonstrate that this new substrate has the requisite characteristics for facilitating cryo-APT of frozen liquids, with a relatively lower volume of precious metals. This complete workflow represents an improved approach for frozen liquid analysis, from preparation of the films to the successful fixation of the liquid in the porous network, to cryo-APT.

2.
J Microsc ; 290(2): 97-105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807049

RESUMO

Sodium lauryl ether sulphate (SLES) is a detergent widely used in cosmetics and personal-care industries; hence, it is of particular interest to study the self-assembled nanostructure it forms at different conditions. Cryogenic transmission electron microscopy (cryo-TEM) is the most suitable technique for the direct-imaging of such systems. However, since SLES is sensitive to flow and shear, specimen preparation artefacts may misrepresent the native state of the solution. In this paper, we present different cryo-TEM specimen preparation methods, and show how they affect the nanostructure of the system. In fact, for this system, we were able to record the native state of the solution only after sufficient time of on-the-grid relaxation (OGR) after blotting. Here, we also intend to point out the importance of considering the nature of the solution when preparing cryo-TEM specimens.

3.
J Microsc ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115688

RESUMO

Reliable and consistent preparation of atom probe tomography (APT) specimens from aqueous and hydrated biological specimens remains a significant challenge. One particularly difficult process step is the use of a focused ion beam (FIB) instrument for preparing the required needle-shaped specimen, typically involving a 'lift-out' procedure of a small sample of material. Here, two alternative substrate designs are introduced that enable using FIB only for sharpening, along with example APT datasets. The first design is a laser-cut FIB-style half-grid close to those used for transmission electron microscopy (TEM) that can be used in a grid holder compatible with APT pucks. The second design is a larger, standalone self-supporting substrate called a 'crown', with several specimen positions, which self-aligns in APT pucks, prepared by electrical discharge machining (EDM). Both designs are made nanoporous, to provide strength to the liquid-substrate interface, using chemical and vacuum dealloying. Alpha brass, a simple, widely available, lower-cost alternative to previously proposed substrates, was selected for this work. The resulting designs and APT data are presented and suggestions are provided to help drive wider community adoption.

4.
J Toxicol Pathol ; 35(3): 275-279, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35832898

RESUMO

Vestibular organs consist of the maculae staticae, which are located in both the utricle and saccule, as well as the semicircular ducts and their ampullas. There have been no reports on specimen preparation methods for vestibular organs, including maculae staticae or semicircular ducts. In this study, we investigated highly reproducible methods of preparing vestibular organ specimens for histopathological examinations. We established a method that allows researchers to observe the utricle and saccule, including otoliths, the ampulla of a semicircular duct, and parts of semicircular ducts. This highly reproducible method is useful for histopathological analysis of mice with symptoms of abnormal equilibrium caused by medical toxicity and genetic modification.

5.
J Microsc ; 265(1): 81-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580164

RESUMO

Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.


Assuntos
Fibroblastos/química , Fibroblastos/citologia , Microscopia de Fluorescência/métodos , Espectrometria por Raios X/métodos , Fixação de Tecidos/métodos , Oligoelementos/análise , Animais , Camundongos , Células NIH 3T3
6.
Microsc Microanal ; 23(4): 708-716, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28578727

RESUMO

Micro-electro-mechanical systems (MEMS)-based heating holders offer exceptional control of temperature and heating/cooling rates for transmission electron microscopy experiments. The use of such devices is relatively straightforward for nano-particulate samples, but the preparation of specimens from bulk samples by focused ion beam (FIB) milling presents significant challenges. These include: poor mechanical integrity and site selectivity of the specimen, ion beam damage to the specimen and/or MEMS device during thinning, and difficulties in transferring the specimen onto the MEMS device. Here, we describe a novel FIB protocol for the preparation and transfer of specimens from bulk samples, which involves a specimen geometry that provides mechanical support to the electron-transparent region, while maximizing the area of that region and the contact area with the heater plate on the MEMS chip. The method utilizes an inclined stage block that minimizes exposure of the chip to the ion beam during milling. This block also allows for accurate and gentle placement of the FIB-cut specimen onto the chip by using simultaneous electron and ion beam imaging during transfer. Preliminary data from Si and Ag on Si samples are presented to demonstrate the quality of the specimens that can be obtained and their stability during in situ heating experiments.

7.
Microsc Microanal ; 23(2): 194-209, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28162119

RESUMO

Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

8.
J Microsc ; 264(2): 189-197, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27237089

RESUMO

Sample preparation for scanning electron microscopy (SEM) may vary by cellular type, composition and method of cultivation. It has been proposed here that a generalized method of sample preparation may be applied for the visualization of bacteria, fungi, and human cellular tissue without modification of protocol between cell types. The following protocol was developed to incorporate polystyrene disk substrates in the simplification of sample preparation for SEM and reduce the possibility of processing artefacts. The proposed method of preparation may be applied to samples grown in either liquid or solid cultural medium regardless of cell type. With the proposed protocol, centrifugation, isolation and critical point drying are not required, therefore increasing specimen integrity. The incorporation of polystyrene disks showed positive cellular adhesion and applications in SEM for bacterial, fungal and human neuronal tissue. In addition, the simplicity of the proposed protocol is highly adaptable and may be further incorporated to visually analyse the effects of antifungals, antibiotics and disease pathogenesis through pathogen-host interactions. The proposed method of specimen preparation was incorporated in either liquid or solid state growth mediums during the cultivation of the selected cellular samples and revealed great promise in the preservation and visualization under the scanning electron microscope.


Assuntos
Técnicas de Cultura de Células , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos , Adesão Celular , Humanos , Poliestirenos
9.
J Microsc ; 260(2): 125-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26139081

RESUMO

The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt-Pd/Al(2)O(3) catalyst in powder form was embedded in acrylic resin and lift-out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross-section view across individual oxide support particles, including the unaltered near surface region of these particles. A site-dependent size distribution of Pt-Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis.

10.
J Microsc ; 259(1): 16-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25818279

RESUMO

Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA