Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37116497

RESUMO

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Assuntos
ADP-Ribosilação , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Cromatina , Dano ao DNA , Anticorpos/genética , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 119(25): e2122900119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696584

RESUMO

Chromatin immunoprecipitation (ChIP) is an important technique for characterizing protein-DNA binding in vivo. One drawback of ChIP-based techniques is the lack of cell type-specificity when profiling complex tissues. To overcome this limitation, we developed SpyChIP to identify cell type-specific transcription factor (TF) binding sites in native physiological contexts without tissue dissociation or nuclei sorting. SpyChIP takes advantage of a specific covalent isopeptide bond that rapidly forms between the 15-amino acid SpyTag and the 17-kDa protein SpyCatcher. In SpyChIP, the target TF is fused with SpyTag by genome engineering, and an epitope tagged SpyCatcher is expressed in cell populations of interest, where it covalently binds to SpyTag-TF. Cell type-specific ChIP is obtained by immunoprecipitating chromatin prepared from whole tissues using antibodies directed against the epitope-tagged SpyCatcher. Using SpyChIP, we identified the genome-wide binding profiles of the Hox protein Ultrabithorax (Ubx) in two distinct cell types of the Drosophila haltere imaginal disc. Our results revealed extensive region-specific Ubx-DNA binding events, highlighting the significance of cell type-specific ChIP and the limitations of whole-tissue ChIP approaches. Analysis of Ubx::SpyChIP results provided insights into the relationship between chromatin accessibility and Ubx-DNA binding, as well as different mechanisms Ubx employs to regulate its downstream cis-regulatory modules. In addition to SpyChIP, we suggest that SpyTag-SpyCatcher technology, as well as other protein pairs that form covalent isopeptide bonds, will facilitate many additional in vivo applications that were previously impractical.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Homeodomínio , Fatores de Transcrição , Animais , Sítios de Ligação/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA/genética , DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitopos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Chembiochem ; 25(3): e202300731, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031893

RESUMO

We designed a platform for monitoring the degradation of exogenous proteins in live cells. We engineered a semi-synthetic platform, which consists of Enhanced Green Fluorescent Protein tagged with SpyCatcher to enable its conjugation to a SpyTag peptide bearing a Von Hippel-Lindau E3 ligand, which was delivered to live cells to promote its degradation. This platform lays the ground for studying the degradation of endogenous proteins equipped with SpyTag and for tracking the degradation of post-translationally modified proteins in live cells.


Assuntos
Proteólise , Peptídeos , Processamento de Proteína Pós-Traducional
4.
Mol Biol Rep ; 51(1): 817, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012451

RESUMO

BACKGROUND: Nitrile Hydratase (NHase) is one of the most important industrial enzyme widely used in the petroleum exploitation field. The enzyme, composed of two unrelated α- and ß-subunits, catalyzes the conversion of acrylonitrile to acrylamide, releasing a significant amount of heat and generating the organic solvent product, acrylamide. Both the heat and acrylamide solvent have an impact on the structural stability of NHase and its catalytic activity. Therefore, enhancing the stress resistance of NHase to toxic substances is meaningful for the petroleum industry. METHODS AND RESULTS: To improve the thermo-stability and acrylamide tolerance of NHase, the two subunits were fused in vivo using SpyTag and SpyCatcher, which were attached to the termini of each subunit in various combinations. Analysis of the engineered strains showed that the C-terminus of ß-NHase is a better fusion site than the N-terminus, while the C-terminus of α-NHase is the most suitable site for fusion with a larger protein. Fusion of SpyTag and SpyCatcher to the C-terminus of ß-NHase and α-NHase, respectively, led to improved acrylamide tolerance and a slight enhancement in the thermo-stability of one of the engineered strains, NBSt. CONCLUSION: These results indicate that in vivo ligation of different subunits using SpyTag/SpyCatcher is a valuable strategy for enhancing subunit interaction and improving stress tolerance.


Assuntos
Hidroliases , Rhodococcus , Rhodococcus/enzimologia , Rhodococcus/genética , Hidroliases/metabolismo , Hidroliases/genética , Hidroliases/química , Estabilidade Enzimática , Estresse Fisiológico , Acrilamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
5.
J Sep Sci ; 47(15): e2400222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091177

RESUMO

Drug-resistant bacterial infections pose a significant challenge in the field of bacterial disease treatment. Finding new antibacterial pathways and targets to combat drug-resistant bacteria is crucial. The bacterial quorum sensing (QS) system regulates the expression of bacterial virulence factors. Inhibiting bacterial QS and reducing bacterial virulence can achieve antibacterial therapeutic effects, making QS inhibition an effective strategy to control bacterial pathogenicity. This article mainly focused on the PqsA protein in the QS system of Pseudomonas aeruginosa. An affinity chromatography medium was developed using the SpyTag/SpyCatcher heteropeptide bond system. Berberine, which can interact with the PqsA target, was screened from Phellodendron amurense by affinity chromatography. We characterized its structure, verified its inhibitory activity on P. aeruginosa, and preliminarily analyzed its mechanism using molecular docking technology. This method can also be widely applied to the immobilization of various protein targets and the effective screening of active substances.


Assuntos
Antibacterianos , Cromatografia de Afinidade , Phellodendron , Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/química , Phellodendron/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana
6.
Biomed Chromatogr ; 38(9): e5957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973567

RESUMO

Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag-TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag-TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, 1H NMR and 13C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.


Assuntos
Cromatografia de Afinidade , Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cromatografia de Afinidade/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
7.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063218

RESUMO

The emergence of SARS-CoV-2 in late 2019 initiated a global pandemic, which led to a need for effective therapeutics and diagnostic tools, including virus-specific antibodies. Here, we investigate different antigen preparations to produce SARS-CoV-2-specific and virus-neutralizing antibodies in chickens (n = 3/antigen) and rabbits (n = 2/antigen), exploring, in particular, egg yolk for large-scale production of immunoglobulin Y (IgY). Reactivity profiles of IgY preparations from chicken sera and yolk and rabbit sera were tested in parallel. We compared three types of antigens based on ancestral SARS-CoV-2: an inactivated whole-virus preparation, an S1 spike-protein subunit (S1 antigen) and a receptor-binding domain (RBD antigen, amino acids 319-519) coated on lumazine synthase (LS) particles using SpyCather/SpyTag technology. The RBD antigen proved to be the most efficient immunogen, and the resulting chicken IgY antibodies derived from serum or yolk, displayed strong reactivity with ELISA and indirect immunofluorescence and broad neutralizing activity against SARS-CoV-2 variants, including Omicron BA.1 and BA.5. Preliminary in vivo studies using RBD-lumazine synthase yolk preparations in a hamster model showed that local application was well tolerated and not harmful. However, despite the in vitro neutralizing capacity, this antibody preparation did not show protective effect. Further studies on galenic properties seem to be necessary. The RBD-lumazine antigen proved to be suitable for producing SARS-CoV-2 specific antibodies that can be applied to such therapeutic approaches and as reference reagents for SARS-CoV-2 diagnostics, including virus neutralization assays.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Galinhas , Imunoglobulinas , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , Imunoglobulinas/imunologia , Galinhas/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Coelhos , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Testes de Neutralização
8.
J Struct Biol ; 215(3): 107981, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245604

RESUMO

Biomaterials for tissue regeneration must mimic the biophysical properties of the native physiological environment. A protein engineering approach allows the generation of protein hydrogels with specific and customised biophysical properties designed to suit a particular physiological environment. Herein, repetitive engineered proteins were successfully designed to form covalent molecular networks with defined physical characteristics able to sustain cell phenotype. Our hydrogel design was made possible by the incorporation of the SpyTag (ST) peptide and multiple repetitive units of the SpyCatcher (SC) protein that spontaneously formed covalent crosslinks upon mixing. Changing the ratios of the protein building blocks (ST:SC), allowed the viscoelastic properties and gelation speeds of the hydrogels to be altered and controlled. The physical properties of the hydrogels could readily be altered further to suit different environments by tuning the key features in the repetitive protein sequence. The resulting hydrogels were designed with a view to allow cell attachment and encapsulation of liver derived cells. Biocompatibility of the hydrogels was assayed using a HepG2 cell line constitutively expressing GFP. The cells remained viable and continued to express GFP whilst attached or encapsulated within the hydrogel. Our results demonstrate how this genetically encoded approach using repetitive proteins could be applied to bridge engineering biology with nanotechnology creating a level of biomaterial customisation previously inaccessible.


Assuntos
Hidrogéis , Análise Serial de Proteínas , Proteínas/genética , Materiais Biocompatíveis/química , Sequência de Aminoácidos
9.
Biotechnol Lett ; 45(7): 847-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171698

RESUMO

OBJECTIVES: PEL3, an alkaline pectinase, exhibited the highest activity among documented alkaline pectate lyases reported in our early study. Unfortunately, undesired thermal stability hampering its industrial application. The purpose of this study is to enhance the performance of wild-type PEL3 (W-PEL3) based on SpyTag/SpyCatcher-mediated cyclization. RESULTS: The cyclized PEL3 (C-PEL3) was observed to fold correctly and generate a spatial conformation in a head-to-tail manner in E. coli. C-PEL3 exhibited comparable optimum pH and temperature to those of W-PEL3. Moreover, the catalytic activity of C-PEL3 increased by 23% compared to W-PEL3, and the kcat/Km of C-PEL3 was 1.5-fold greater than that of the W-PEL3. Importantly, C-PEL3 showed improved stability compared to W-PEL3. Firstly, C-PEL3 displayed a 65% increase in residual activity after treatment at 55 °C for 30 min. Secondly, C-PEL3 was prone to resist heat-induced protein aggregation. Thirdly, C-PEL3 exhibited metal ion stability. Circular dichroism analysis revealed that C-PEL3 was more capable of maintaining its secondary structures than W-PEL3 upon heat treatment. CONCLUSIONS: C-PEL3, the initial example of a circular pectinase through SpyTag/SpyCatcher cyclization, exhibits superior performance and represents a highly encouraging contender for industrial utilization.


Assuntos
Escherichia coli , Poligalacturonase , Ciclização , Escherichia coli/genética , Proteínas/química , Temperatura
10.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768169

RESUMO

The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method.


Assuntos
Elétrons , Flavina-Adenina Dinucleotídeo , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose 1-Desidrogenase/metabolismo , Proteínas/metabolismo , Oxirredução
11.
Trends Biochem Sci ; 43(10): 806-817, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30041839

RESUMO

Chemical topology has emerged as one intriguing feature in protein engineering. Nature demonstrates the elegance and power of protein topology engineering in the unique biofunctions and exceptional stabilities of cyclotides and lasso peptides. With entangling protein motifs and genetically encoded peptide-protein chemistry, artificial proteins with complex topologies, including cyclic proteins, star proteins, and protein catenanes, have become accessible. Among them, proteins with mechanical bonds ('mechanoproteins') are of special interest, owing to their potential functional benefits such as structure stabilization, quaternary structure control, synergistic multivalency effect, and dynamic mechanical sliding/switching properties. In this review article, we summarize recent progress in the field of protein topology engineering as well as the challenges and opportunities that it holds.


Assuntos
Proteínas/química , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica
12.
J Biol Chem ; 297(4): 101119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450162

RESUMO

The Split-Cre system is a powerful tool for genetic manipulation and can be used to spatiotemporally control gene expression in vivo. However, the low activity of the reconstituted NCre/CCre recombinase in the Split-Cre system limits its application as an indicator of the simultaneous expression of a pair of genes of interest. Here, we describe two approaches for improving the activity of the Split-Cre system after Cre reconstitution based on self-associating split GFP (Split-GFP) and SpyTag/SpyCatcher conjugation. First, we created the Split-GFP-Cre system by constructing fusion proteins of NCre and CCre with the N-terminal and C-terminal subunits of GFP, respectively. Reconstitution of Cre by GFP-mediated dimerization of the two fusion proteins resulted in recombinase activity approaching that of full-length Cre in living cells. Second, to further increase recombinase activity at low levels of Split-Cre expression, the Split-Spy-GCre system was established by incorporating the sequences for SpyTag and SpyCatcher into the components of the Split-GFP-Cre system. As anticipated, covalent conjugation of the SpyTag and SpyCatcher segments improved Split-GFP dimerization to further increase Cre recombinase activity in living cells. The increased efficiency and robustness of this dual-split system (Split-Cre and Split-GFP) minimize the problems of incomplete double gene-specific KO or low labeling efficiency due to poor NCre/CCre recombinase activity. Thus, this Split-Spy-GCre system allows more precise gene manipulation of cell subpopulations, which will provide advanced analysis of genes and cell functions in complex tissue such as the immune system.


Assuntos
Escherichia coli , Expressão Gênica , Proteínas de Fluorescência Verde , Integrases , Microrganismos Geneticamente Modificados , Proteínas Recombinantes de Fusão , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Integrases/genética , Integrases/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Multimerização Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
13.
Chembiochem ; 23(2): e202100472, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34767678

RESUMO

Comparison of different membrane anchor motifs for the surface display of a protein of interest (passenger) is crucial for achieving the best possible performance. However, generating genetic fusions of the passenger to various membrane anchors is time-consuming. We herein employ a recently developed modular display system, in which the membrane anchor and the passenger are expressed separately and assembled in situ via SpyCatcher and SpyTag interaction, to readily combine a model passenger cytochrome P450 BM3 (BM3) with four different membrane anchors (Lpp-OmpA, PgsA, INP and AIDA-I). This approach has the significant advantage that passengers and membrane anchors can be freely combined in a modular fashion without the need to generate direct genetic fusion constructs in each case. We demonstrate that the membrane anchors impact not only cell growth and membrane integrity, but also the BM3 surface display capacity and whole-cell biocatalytic activity. The previously used Lpp-OmpA as well as PgsA were found to be efficient for the display of BM3 via SpyCatcher/SpyTag interaction. Our strategy can be transferred to other user-defined anchor and passenger combinations and could thus be used for acceleration and improvement of various applications involving cell surface display.


Assuntos
Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo
14.
Circ Res ; 126(6): 737-749, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32078438

RESUMO

RATIONALE: cMyBP-C (cardiac myosin-binding protein-C) is a critical regulator of heart contraction, but the mechanisms by which cMyBP-C affects actin and myosin are only partly understood. A primary obstacle is that cMyBP-C localization on thick filaments may be a key factor defining its interactions, but most in vitro studies cannot duplicate the unique spatial arrangement of cMyBP-C within the sarcomere. OBJECTIVE: The goal of this study was to validate a novel hybrid genetic/protein engineering approach for rapid manipulation of cMyBP-C in sarcomeres in situ. METHODS AND RESULTS: We designed a novel cut and paste approach for removal and replacement of cMyBP-C N'-terminal domains (C0-C7) in detergent-permeabilized cardiomyocytes from gene-edited Spy-C mice. Spy-C mice express a TEVp (tobacco etch virus protease) cleavage site and a SpyTag (st) between cMyBP-C domains C7 and C8. A cut is achieved using TEVp which cleaves cMyBP-C to create a soluble N'-terminal γC0C7 (endogenous [genetically encoded] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C) fragment and an insoluble C'-terminal SpyTag-C8-C10 fragment that remains associated with thick filaments. Paste of new recombinant (r)C0C7 domains is achieved by a covalent bond formed between SpyCatcher (-sc; encoded at the C'-termini of recombinant proteins) and SpyTag. Results show that loss of γC0C7 reduced myofilament Ca2+ sensitivity and increased cross-bridge cycling (ktr) at submaximal [Ca2+]. Acute loss of γC0C7 also induced auto-oscillatory contractions at submaximal [Ca2+]. Ligation of rC0C7 (exogenous [recombinant] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C)-sc returned pCa50 and ktr to control values and abolished oscillations, but phosphorylated (p)-rC0C7-sc did not completely rescue these effects. CONCLUSIONS: We describe a robust new approach for acute removal and replacement of cMyBP-C in situ. The method revealed a novel role for cMyBP-C N'-terminal domains to damp sarcomere-driven contractile waves (so-called spontaneous oscillatory contractions). Because phosphorylated (p)-rC0C7-sc was less effective at damping contractile oscillations, results suggest that spontaneous oscillatory contractions may contribute to enhanced contractility in response to inotropic stimuli.


Assuntos
Sinalização do Cálcio , Proteínas de Transporte/genética , Edição de Genes/métodos , Contração Miocárdica , Engenharia de Proteínas/métodos , Sarcômeros/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Sarcômeros/fisiologia
15.
Nanotechnology ; 33(48)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882111

RESUMO

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Assuntos
HIV-1 , Nanopartículas , Vacinas , Animais , Anticorpos Amplamente Neutralizantes , Células HEK293 , Humanos , Projetos Piloto , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
16.
Anal Bioanal Chem ; 414(18): 5373-5384, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34978587

RESUMO

Mycotoxins are low molecular weight toxic compounds, which can cause severe health problems in animals and humans. Immunoassays allow rapid, simple and cost-effective screening of mycotoxins. Sandwich assays with a direct readout provide great improvement in terms of selectivity and sensitivity, compared to the widely used competitive assay formats, for the analysis of low molecular weight molecules. In this work, we report a non-competitive fluorescence anti-immune complex (IC) immunoassay, based on the specific recognition of HT-2 toxin with a pair of recombinant antibody fragments, namely antigen-binding fragment (Fab) (anti-HT-2 (10) Fab) and single-chain variable fragment (scFv) (anti-IC HT-2 (10) scFv). The SpyTag and SpyCatcher glue proteins were applied for the first time as a bioconjugation tool for the analysis of mycotoxins. To this aim, a SpyTag-mScarlet-I (fluorescent protein) and scFv-SpyCatcher fusion proteins were constructed, produced and fused in situ during the assay by spontaneous Tag-Catcher binding. The assay showed an excellent sensitivity with an EC50 of 4.8 ± 0.4 ng mL-1 and a dynamic range from 1.7 ± 0.3 to 13 ± 2 ng mL-1, an inter-day reproducibility of 8.5% and a high selectivity towards HT-2 toxin without cross-reactivity with other Fusarium toxins. The bioassay was applied to the analysis of the toxin in an oat reference material and in oat samples, with a LOD of 0.6 µg kg-1, and the results were validated by analysing a certificate reference material and by HPLC-MS/MS.


Assuntos
Micotoxinas , Anticorpos de Cadeia Única , Animais , Complexo Antígeno-Anticorpo , Fragmentos Fab das Imunoglobulinas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
17.
J Nanobiotechnology ; 20(1): 493, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424615

RESUMO

BACKGROUND: Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS: Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION: These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.


Assuntos
Circovirus , Nanopartículas , Suínos , Animais , Vacinas Combinadas , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas
18.
Biotechnol Lett ; 44(4): 613-621, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35359178

RESUMO

To study the effect of SpyTag/SpyCatcher cyclization on stability and refolding of protein, we constructed a cyclized green fluorescent protein (SRGFP) and its derivative to act as a linear structure control (L-SRGFP). SRGFP and L-SRGFP showed similar fluorescence characteristics to the wild-type GFP, while compared with GFP and L-SRGFP, the thermal stability and denaturation resistance of SRGFP were improved. The refolding efficiencies of these three denatured proteins were investigated under different pH, temperature and initial protein concentration conditions, and it was found that SRGFP was superior to GFP and L-SRGFP in terms of refolding yield and refolding speed. In the pH range of 8.0-8.5, SRGFP could basically recover all fluorescence, while GFP and L-SRGFP recovered only about 87.52% and 88.58%. When refolded at a high temperature (37 °C), SRGFP still recovered 85.27% of the fluorescence, whereas GFP and L-SRGFP recovered only around 69.43% and 68.45%. At a high initial protein concentration (5 mg/mL), the refolding yield of SRGFP was about 15% higher than that of both GFP and L-SRGFP. These results suggest that the introduction of SpyRing structure (head-to-tail cyclization via SpyTag and SpyCatcher) improved the protein's stability and facilitated the refolding of denatured protein.


Assuntos
Temperatura Alta , Ciclização , Proteínas de Fluorescência Verde/genética , Desnaturação Proteica , Temperatura
19.
Mar Drugs ; 20(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421987

RESUMO

A novel approach to producing high-purity fucoxanthinol (FXOH) was exploited as a sustainable method to maximize fucoxanthin (FX) utilization. Through fusing the genes of cholesterol esterase and SpyTag and then expressing them in Escherichia coli, the fusion chimera was self-assembled into insoluble active aggregates by SpyTag, which could be regarded as carrier-free immobilization. The immobilization yield of the active cholesterol esterase aggregates could reach 60%. They have expressed good activity retention at 92.48% and 60.13% after 3 and 12 cycles, respectively, which is an exciting finding. The conversion ratio of FX to FXOH is 95.02%, which is remarkably higher than those realized via the conventional chemical reduction method (55.86%) and the enzymatic hydrolysis method by free cholesterol esterases (84.51%). The purity of FXOH obtained by this method is as high as 98%, which is much higher than those obtained by other methods. Thus, a promising method for simultaneously purifying and immobilizing active cholesterol esterase aggregates is demonstrated in this study by SpyTag tailoring. In addition, this study provides an eco-friendly method for producing high-purity FXOH from FX in a highly efficient manner.


Assuntos
Esterol Esterase , beta Caroteno , Esterol Esterase/genética , Xantofilas
20.
Microb Cell Fact ; 20(1): 37, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549102

RESUMO

BACKGROUND: Exploring a simple and versatile technique for direct immobilization of target enzymes from cell lysate without prior purification is urgently needed. Thus, a novel all-in-one strategy for purification and immobilization of ß-1,3-xylanase was proposed, the target enzymes were covalently immobilized on silica nanoparticles via elastin-like polypeptides (ELPs)-based biomimetic silicification and SpyTag/SpyCatcher spontaneous reaction. Thus, the functional carriers that did not require the time-consuming surface modification step were quickly and efficiently prepared. These carriers could specifically immobilize the SpyTag-fused target enzymes from the cell lysate without pre-purification. RESULTS: The ELPs-SpyCatcher hardly leaked from the carriers (0.5%), and the immobilization yield of enzyme was up to 96%. Immobilized enzyme retained 85.6% of the initial activity and showed 88.6% of the activity recovery. Compared with free ones, the immobilized ß-1,3-xylanase showed improved thermal stability, elevated storage stability and good pH tolerance. It also retained more than 70.6% of initial activity after 12 reaction cycles, demonstrating its excellent reusability. CONCLUSIONS: The results clearly highlighted the effectiveness of the novel enzyme immobilization method proposed here due to the improvement of overall performance of immobilized enzyme in respect to free form for the hydrolysis of macromolecular substrates. Thus, it may have great potential in the conversion of algae biomass as well as other related fields.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Biocatálise , Endo-1,4-beta-Xilanases/química , Enzimas Imobilizadas/química , Nanoestruturas/química , Misturas Complexas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA