Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 673: 169-174, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37392480

RESUMO

Strumpellin/Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex subunit 5 (WASHC5) is a core component of the WASH complex, and its mutations confer pathogenicity for hereditary spastic paraplegia (HSP) type SPG8, a rare neurodegenerative gait disorder. WASH complex activates actin-related protein-2/3-mediated actin polymerization and plays a pivotal role in intracellular membrane trafficking in endosomes. In this study, we examined the role of strumpellin in the regulation of structural plasticity of cortical neurons involved in gait coordination. Administration of a lentivirus containing a strumpellin-targeting short hairpin RNA (shRNA) to cortical motor neurons lead to abnormal motor coordination in mice. Strumpellin knockdown using shRNA attenuated dendritic arborization and synapse formation in cultured cortical neurons, and this effect was rescued by wild-type strumpellin expression. Compared with the wild-type, strumpellin mutants N471D or V626F identified in patients with SPG8 exhibited no differences in rescuing the defects. Moreover, the number of F-actin clusters in neuronal dendrites was decreased by strumpellin knockdown and rescued by strumpellin expression. In conclusion, our results indicate that strumpellin regulates the structural plasticity of cortical neurons via actin polymerization.


Assuntos
Actinas , Paraplegia Espástica Hereditária , Animais , Camundongos , Actinas/metabolismo , Endossomos/metabolismo , Marcha , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
2.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34312900

RESUMO

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Assuntos
Proteômica , Paraplegia Espástica Hereditária , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
3.
Neurol Sci ; 41(3): 699-703, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31814071

RESUMO

BACKGROUND: Spastic paraplegia type 8 (SPG8) is an autosomal-dominant form of hereditary spastic paraplegia (AD-HSP) caused by a mutation in the KIAA0196 gene. SPG8 accounts for 1% of less of all AD-HSP and the genotype-phenotype correlation remains poorly understood. METHODS: We report the first clinical and genetic description of SPG8 disease in Italian patients. We identified four new mutations in KIAA0196 gene. These variants were identified using a multigene targeted resequencing HSP panel. We took this opportunity to review the pertinent literature. RESULTS: Age at disease onset was in the third or fourth decade of life. Stiffness of the lower limb with spastic gait, walking impairment, and decreased vibration sense were common early symptoms. Subjects of two families had bladder control abnormalities. Unlike previous reported cases, Italian SPG8 subjects have pure form of spastic paraparesis without cranial nerve involvement, and onset is in adult life. DISCUSSION: By a clinical point of view, it is hard to differentiate SPG8 from the SPG4, in which bladder and vibration sense dysfunctions are frequent signs. The differential diagnosis with other forms of AD-HSPs seems relatively easier if one considers the early-onset manifestations in SPG3A and the peripheral nervous system and cerebellar involvement seen in SPG31.


Assuntos
Paraplegia/genética , Paraplegia/fisiopatologia , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Adulto , Estudos de Associação Genética , Humanos , Itália , Pessoa de Meia-Idade , Paraplegia/diagnóstico , Linhagem , Paraplegia Espástica Hereditária/diagnóstico
4.
Eur J Cell Biol ; 101(3): 151244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667337

RESUMO

Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Família de Proteínas da Síndrome de Wiskott-Aldrich , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Humanos , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
5.
Front Cell Dev Biol ; 9: 658865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869225

RESUMO

The Arp2/3 complex generates branched actin networks at different locations of the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In this review, we will discuss how these two NPFs are controlled within distinct, yet related, multiprotein complexes. These complexes are not spontaneously assembled around WASH and WAVE, but require cellular assembly factors. The centrosome, which nucleates microtubules and branched actin, appears to be a privileged site for WASH complex assembly. The actin and microtubule cytoskeletons are both responsible for endosome shape and membrane remodeling. Motors, such as dynein, pull endosomes and extend membrane tubules along microtubule tracks, whereas branched actin pushes onto the endosomal membrane. It was recently uncovered that WASH assembles a super complex with dynactin, the major dynein activator, where the Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap initiates the first actin filament that primes the autocatalytic nucleation of branched actin at the surface of endosomes. Possible coordination between pushing and pulling forces in the remodeling of endosomal membranes is discussed.

6.
Dis Model Mech ; 11(9)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30061306

RESUMO

Hereditary spastic paraplegias (HSPs) are genetically diverse and clinically characterised by lower limb weakness and spasticity. The N471D and several other point mutations of human strumpellin (Str; also known as WASHC5), a member of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex, have been shown to cause a form of HSP known as spastic paraplegia 8 (SPG8). To investigate the molecular functions of wild-type (WT) and N417D Str, we generated Dictyostelium Str- cells and ectopically expressed StrWT-GFP or StrN471D-GFP in Str- and WT cells. Overexpression of both proteins apparently caused a defect in cell division, as we observed a clear increase in multinucleate cells. Real-time PCR analyses revealed no transcriptional changes in WASH complex subunits in Str- cells, but western blots showed a twofold decrease in the SWIP subunit. GFP-trap experiments in conjunction with mass-spectrometric analysis revealed many previously known, as well as new, Str-interacting proteins, and also proteins that no longer bind to StrN471D At the cellular level, Str- cells displayed defects in cell growth, phagocytosis, macropinocytosis, exocytosis and lysosomal function. Expression of StrWT-GFP in Str- cells rescued all observed defects. In contrast, expression of StrN471D-GFP could not rescue lysosome morphology and exocytosis of indigestible material. Our results underscore a key role for the WASH complex and its core subunit, Str, in the endolysosomal system, and highlight the fundamental importance of the Str N471 residue for maintaining lysosome morphology and dynamics. Our data indicate that the SPG8-causing N471D mutation leads to a partial loss of Str function in the endolysosomal system. This article has an associated First Person interview with the first author of the paper.


Assuntos
Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Proteínas/metabolismo , Animais , Divisão Celular , Dictyostelium/citologia , Dictyostelium/metabolismo , Endocitose , Exocitose , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação/genética , Fenótipo , Proteínas/química
7.
Clin Case Rep ; 5(9): 1468-1470, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28878906

RESUMO

SPG 8 is an autosomal dominant HSP, which phenotype results from KIAA0196 gene mutations. There have been twelve types of KIAA0196 mutations described in HGMD, which are located in conservative region of gene encoding strumpellin. We describe first patient in Poland, simultaneously second in the world with KIAA0196 mutation - p.V620A.

8.
Neurobiol Aging ; 56: 213.e1-213.e5, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28551275

RESUMO

Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, in silico analyses, real-time PCR, and CCDC53 immunoblotting. We identified 1 patient with the heterozygous variant c.26C>T in CAPZA1, predicted to result in p.Ser9Leu, and a second with the heterozygous start codon variant c.2T>C in CCDC53. In silico analysis predicted structural changes in the N-terminus of CAPZα1, which may interfere with CAPZα:CAPZß dimerization. Though the translation initiation codon of CCDC53 is mutated, real-time PCR and immunoblotting did neither reveal any evidence for a CCDC53 haploinsufficiency nor for aberrant CCDC53 protein species. Moreover, a disease-causing C9orf72 repeat expansion mutation was later on identified in this patient. Thus, with the exception of a putatively pathogenic heterozygous c.26C>T CAPZA1 variant, our genetic analysis did not reveal mutations in VCP and the remaining WASH complex subunits.


Assuntos
Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Estudos de Associação Genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Proteína com Valosina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Proteína de Capeamento de Actina CapZ/genética , Estudos de Coortes , Comorbidade , Feminino , Degeneração Lobar Frontotemporal/epidemiologia , Predisposição Genética para Doença/genética , Alemanha/epidemiologia , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas/genética
9.
J Exp Neurosci ; 9: 15-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25987849

RESUMO

Hereditary spastic paraplegia (HSP) is one of the most heterogeneous neurodegenerative diseases with more than 50 identified genes causing a relatively stereotypical phenotypic presentation. Recent studies of HSP pathogenesis have suggested the existence of shared biochemical pathways that are crucial for axonal maintenance and degeneration. We explored possible interactions of several proteins associated with this condition. Here we report interactions of endogenous and overexpressed strumpellin with another HSP-associated protein, spartin. This biochemical interaction does not appear to be a part of the Wiskott-Aldrich syndrome protein and Scar homologue (WASH) complex because spartin is not co-immunoprecipitated with WASH1 protein. The spartin-strumpellin association does not require the presence of the microtubule interacting and trafficking domain of spartin. Over-expression of mutant forms of strumpellin with the introduced HSP-causing mutations does not alter the colocalization of these two proteins. Knockdown of strumpellin in cultured cortical rat neurons interferes with development of neuronal branching and results in reduced expression of endogenous spartin. Proteosomal inhibition stabilized the levels of spartin and WASH1 proteins, supporting increased spartin degradation in the absence of strumpellin.

10.
J Neurol Sci ; 347(1-2): 372-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25454649

RESUMO

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous, neurodegenerative movement disorder. A total of eight KIAA0196/strumpellin variants have thus far been associated with SPG8, a rare dominant HSP. We present a novel strumpellin alteration in a small family with clinically pure HSP. We corroborated its causality by comparing it to rare benign variants at several levels, and, along this line, also re-considered previous genetic reports on SPG8. These analyses identified significant challenges in the interpretation of strumpellin alterations, and suggested that at least two of the few families claimed to suffer from SPG8 may have been genetically misdiagnosed.


Assuntos
Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Adulto , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
11.
Commun Integr Biol ; 3(3): 227-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20714399

RESUMO

WASH is the Arp2/3 activating protein that is localized at the surface of endosomes, where it induces the formation of branched actin networks. This activity of WASH favors, in collaboration with dynamin, the fission of transport intermediates from endosomes, and hence regulates endosomal trafficking of several cargos. We have purified a novel stable multiprotein complex containing WASH, the WASH complex, and we examine here the evolutionary conservation of its seven subunits across diverse eukaryotic phyla. This analysis supports the idea that the invention of the WASH complex has involved the incorporation of an independent complex, the CapZ alpha/beta heterodimer, forming the so-called Capping Protein (CP), as illustrated by the yeasts S. cerevisiae and S. pombe, which possess the CP heterodimer but no other subunits of the WASH complex. The alignements of the orthologous genes that we have generated give a view on the conservation of the different subunits and on their organization into domains. Moreover, we propose here a unique nomenclature for the different subunits to prevent future confusions in the field.

12.
Int J Biol Sci ; 6(2): 163-71, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20376207

RESUMO

Ulcerative colitis (UC) is one of the major forms of inflammatory bowel disease with unknown cause. A molecular marker, WAFL, has recently been found to be up-regulated in the inflamed colonic mucosa of UC patients. Towards understanding biological function of WAFL, we analyzed proteins interacting with WAFL in HEK-293 cells by immunoprecipitation and mass spectrometry. Among four proteins found to specifically interact with WAFL, both KIAA0196 and KIAA1033 bind to alpha-appendage of the adaptor protein complex 2 (AP2), which acts as an interaction hub for accessory proteins in endocytosis mediated by clathrin-coated vesicle (CCV). The specific interaction between WAFL and KIAA0196 was also confirmed in human colorectal carcinoma HCT-116 cells by co-immunoprecipitation with specific antibodies. Meta-analyses of the databases of expressed genes suggest that the three genes are co-expressed in many tissues and cell types, and that their molecular function may be classified in the category of 'membrane traffic protein'. Therefore, these results suggest that WAFL may play an important role in endocytosis and subsequent membrane trafficking by interacting with AP2 through KIAA0196 and KIAA1033.


Assuntos
Colite Ulcerativa/patologia , Endocitose , Proteínas de Ligação a Tacrolimo/metabolismo , Fator de Transcrição AP-2/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Neoplasias Colorretais/patologia , Humanos , Macrófagos/metabolismo , Espectrometria de Massas/métodos , Modelos Biológicos , Proteínas/metabolismo , Proteômica/métodos , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA