Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 114(5): 1149-1163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799285

RESUMO

Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.


Assuntos
Sistemas CRISPR-Cas , Plantas , Plantas/genética , Plantas/metabolismo , Edição de Genes/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Genoma de Planta
2.
J Nanobiotechnology ; 22(1): 568, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285480

RESUMO

Systemic infection with Candida albicans poses a significant risk for people with weakened immune systems and carries a mortality rate of up to 60%. However, current therapeutic options have several limitations, including increasing drug tolerance, notable off-target effects, and severe adverse reactions. Over the past four decades, the progress in developing drugs to treat Candida albicans infections has been sluggish. This comprehensive review addresses the limitations of existing drugs and summarizes the efforts made toward redesigning and innovating existing or novel drugs through nanotechnology. The discussion explores the potential applications of nanomedicine in Candida albicans infections from four perspectives: nano-preparations for anti-biofilm therapy, innovative formulations of "old drugs" targeting the cell membrane and cell wall, reverse drug resistance therapy targeting subcellular organelles, and virulence deprivation therapy leveraging the unique polymorphism of Candida albicans. These therapeutic approaches are promising to address the above challenges and enhance the efficiency of drug development for Candida albicans infections. By harnessing nano-preparation technology to transform existing and preclinical drugs, novel therapeutic targets will be uncovered, providing effective solutions and broader horizons to improve patient survival rates.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Nanotecnologia , Humanos , Candida albicans/efeitos dos fármacos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Nanotecnologia/métodos , Animais , Farmacorresistência Fúngica/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
3.
Ecotoxicol Environ Saf ; 269: 115799, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070414

RESUMO

The expression of Cry proteins in genetically modified rice varieties safeguards the crop from lepidopteran pests. These proteins have the potential to be transferred through the food chain to arthropods like planthoppers and predatory spiders, triggering defensive responses in these unintended organisms. Hence, we hypothesized that Cry protein might influence the growth and development of spiders by altering protective enzyme activities. The results showed that Cry1Ab protein could accumulate in tissues and subcellular organelles of Pardosa pseudoannulata from Nilaparvata lugens. Cry1Ab protein exposure prolonged the developmental duration in the 5th and 7th instar spiderlings but induced no alterations of other growth indicators, such as body length, median ocular area, and survival rate. In addition, Cry1Ab protein exerted no adverse impacts on several detoxifying enzymes (i.e., superoxide dismutase, catalase, glutathione peroxidase, and acetylcholine esterase) in muscle, midgut, ganglia, and hemolymph at subcellular components (i.e., microsome and cytoplasm). To further explore the effects of Cry1Ab protein on the spiderlings, we performed an integrated transcriptome analysis on spiderlings exposed to Cry1Ab protein. The results showed that Cry1Ab protein might prolong the development duration of P. pseudoannulata via the altered cuticle metabolism (e.g., chitin metabolic process and structural constituent of cuticle). In addition, the gene expression profile associated with detoxifying enzymes and three stress-responsive pathways (JAK/STAT, JNK/SAPK, and Hippo pathways) also displayed no significant alterations under Cry1Ab exposure. Collectively, this integrated analysis generates multidimensional insights to assess the effects of Cry1Ab protein on non-target spiders and demonstrates that Cry1Ab protein exerts no toxicity in P. pseudoannulata.


Assuntos
Animais Peçonhentos , Hemípteros , Aranhas , Animais , Hemípteros/metabolismo , Superóxido Dismutase/metabolismo , Crescimento e Desenvolvimento
4.
J Lipid Res ; 64(2): 100322, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549592

RESUMO

The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.


Assuntos
Ceramidas , Esfingosina , Ceramidas/metabolismo , Esfingosina/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Lisofosfolipídeos/metabolismo
5.
Curr Genet ; 65(3): 691-694, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30603876

RESUMO

The bacterial cytoplasm, once thought to be a relatively undifferentiated reaction medium, has now been recognized to have extensive microstructure. This microstructure includes bacterial microcompartments, inclusion bodies, granules, and even some membrane-bound vesicles. Several recent papers suggest that bacteria may also organize their cytoplasm using an additional mechanism: phase-separated membraneless organelles, a strategy commonly used by eukaryotes. Phase-separated membraneless organelles such as Cajal bodies, the nucleolus, and stress granules allow proteins to become concentrated in sub-compartments of eukaryotic cells without being surrounded by a barrier to diffusion. In this review, we summarize the known structural organization of the bacterial cytoplasm and discuss the recent evidence that phase-separated membraneless organelles might also play a role in bacterial systems. We specifically focus on bacterial ribonucleoprotein complexes and two different protein components of the bacterial nucleoid that may have the ability to form subcellular partitions within bacteria cells.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Células Intersticiais de Cajal/metabolismo , Organelas/metabolismo
6.
Angew Chem Int Ed Engl ; 58(21): 6987-6992, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30888728

RESUMO

As a typical bioorthogonal reaction, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been used for drug design and synthesis. However, for localized drug synthesis, it is important to be able to determine where the CuAAC reaction occurs in living cells. In this study, we constructed a heterogeneous copper catalyst on a metal-organic framework that could preferentially accumulate in the mitochondria of living cells. Our system enabled the localized synthesis of drugs through a site-specific CuAAC reaction in mitochondria with good biocompatibility. Importantly, the subcellular catalytic process for localized drug synthesis avoided the problems of the delivery and distribution of toxic molecules. In vivo tumor therapy experiments indicated that the localized synthesis of resveratrol-derived drugs led to greater antitumor efficacy and minimized side effects usually associated with drug delivery and distribution.


Assuntos
Antioxidantes/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proliferação de Células , Cobre/química , Estruturas Metalorgânicas/química , Mitocôndrias/metabolismo , Resveratrol/metabolismo , Alcinos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Azidas , Caenorhabditis elegans/efeitos dos fármacos , Catálise , Química Click , Reação de Cicloadição , Humanos , Células MCF-7 , Camundongos , Resveratrol/administração & dosagem , Resveratrol/química
7.
Int J Mol Sci ; 19(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966288

RESUMO

Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs. Under conditions of Pi deficiency, Pi is also translocated from the shoot to the root via the phloem. Vacuoles act as a storage pool for extra Pi, enabling its delivery to the cytosol, a process which plays an important role in the homeostatic control of cytoplasmic Pi levels. In mitochondria and chloroplasts, Pi homeostasis regulates ATP synthase activity to maintain optimal ATP levels. Additionally, the endoplasmic reticulum functions to direct Pi transporters and Pi toward various locations. The intracellular membrane potential and pH in the subcellular organelles could also play an important role in the kinetics of Pi transport. The presented review provides an overview of Pi transport mechanisms in subcellular organelles, and also discusses how they affect Pi balancing at cellular, tissue, and whole-plant levels.


Assuntos
Proteínas de Transporte de Fosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Citosol/metabolismo , Fósforo/metabolismo , Vacúolos/metabolismo
8.
Biochim Biophys Acta ; 1853(10 Pt A): 2539-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094769

RESUMO

Expression and activity of the Ste20-like kinase, SLK, are increased during kidney development and recovery from ischemia-reperfusion injury. SLK mediates apoptosis in various cells, and can regulate cell cycle progression and cytoskeletal remodeling. In cells, SLK is detected in a high molecular mass complex, suggesting that SLK is a dimer/oligomer, or is in tight association with other proteins. To better understand the regulation, localization and function of SLK, we sought to identify proteins in this high molecular mass complex. Analysis by mass spectroscopy identified the nucleoporin, translocated promoter region (Tpr), and the cytoskeletal protein, α-actinin-4, as potential SLK-interacting proteins. Using a protein complementation assay, we showed that the 350 amino acid C-terminal, coiled-coil domain of SLK was responsible for homodimerization, as well as interaction with Tpr and α-actinin-4. The association of SLK with Tpr and α-actinin-4, respectively, was confirmed by co-immunoprecipitation. Subsets of total cellular SLK colocalized with Tpr at the nuclear envelope, and α-actinin-4 in the cytoplasm. Expression of Tpr attenuated activation-specific autophosphorylation of SLK, and blocked SLK-induced apoptosis and AP-1 activity. In contrast to the effect of Tpr, autophosphorylation of SLK was not affected by α-actinin-4. Thus, SLK interacts with Tpr and α-actinin-4 in cells, and these protein-protein interactions may control the subcellular localization and the biological activity of SLK.


Assuntos
Actinina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinina/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas/genética
9.
Small ; 12(47): 6451-6477, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27592595

RESUMO

Understanding metabolism and dynamic biological events in cells, as well as physiological functions and pathological changes in organisms, is the major goal of biological investigations. It will improve our capability to diagnose and treat diseases, and will enhance personalized medicine. Fluorescence imaging is a powerful tool that plays an essential role in acquiring the comprehensive knowledge necessary to help reach this goal. Fluorescent molecules are crucial factors for obtaining high quality images. In contrast to conventional fluorogens with aggregation-caused quenching (ACQ) effect, molecules that show aggregation-induced emission (AIE) effect open up new avenues for fluorescence imaging. So far, a large variety of AIE probes have been developed and applied to bioimaging because of their outstanding characteristics, such as high fluorescence efficiency, excellent photostability and high signal-to-noise ratio (SNR). In this review, recent advances in AIE-based probes for biomedical imaging of intracellular microenvironments, natural macromolecules, subcellular organelles, intracellular processes, living tissues, and diagnosis and therapeutic evaluation of diseases in vivo are summarized. It is hoped that this review generates great research enthusiasm for AIE-based bioimaging, in order to promote the development of promising AIE probes and guide us to a better understanding of the biological essence of life.


Assuntos
Imagem Óptica/métodos , Animais , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
10.
J Biol Chem ; 289(1): 437-48, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24235149

RESUMO

Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.


Assuntos
Membranas Intracelulares/química , Proteínas de Membrana/química , Peroxissomos/química , Sinais Direcionadores de Proteínas/fisiologia , Receptores Citoplasmáticos e Nucleares/química , Proteínas Repressoras/química , Motivos de Aminoácidos , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Peroxissomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
J Biol Chem ; 289(16): 11059-11067, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24584932

RESUMO

The small GTPase Rab27A is a crucial regulator of actin-based melanosome transport in melanocytes, and functionally defective Rab27A causes human Griscelli syndrome type 2, which is characterized by silvery hair. A GTPase-deficient, constitutively active Rab27A(Q78L) mutant has been shown to act as an inhibitor of melanosome transport and to induce perinuclear aggregation of melanosomes, but the molecular mechanism by which Rab27A(Q78L) inhibits melanosome transport remained to be determined. In this study, we attempted to identify the primary cause of the perinuclear melanosome aggregation induced by Rab27A(Q78L). The results showed that Rab27A(Q78L) is unable to localize on mature melanosomes and that its inhibitory activity on melanosome transport is completely dependent on its binding to the Rab27A effector Slac2-a/melanophilin. When we forcibly expressed Rab27A(Q78L) on mature melanosomes by using a novel melanosome-targeting tag that we developed in this study and named the MST tag, the MST-Rab27A(Q78L) fusion protein behaved in the same manner as wild-type Rab27A. It localized on mature melanosomes without inducing melanosome aggregation and restored normal peripheral melanosome distribution in Rab27A-deficient cells. These findings indicate that the GTPase activity of Rab27A is required for its melanosome localization but is not required for melanosome transport.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanossomas/metabolismo , Mutação de Sentido Incorreto , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Síndromes de Imunodeficiência/patologia , Linfo-Histiocitose Hemofagocítica , Melanossomas/genética , Melanossomas/patologia , Camundongos , Piebaldismo/genética , Piebaldismo/metabolismo , Piebaldismo/patologia , Doenças da Imunodeficiência Primária , Transporte Proteico/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
12.
J Biol Chem ; 289(16): 11342-11352, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24599955

RESUMO

We have examined the distribution of ribosomes and nucleoids in live Escherichia coli cells under conditions of growth, division, and in quiescence. In exponentially growing cells translating ribosomes are interspersed among and around the nucleoid lobes, appearing as alternative bands under a fluorescence microscope. In contrast, inactive ribosomes either in stationary phase or after treatment with translation inhibitors such as chloramphenicol, tetracycline, and streptomycin gather predominantly at the cell poles and boundaries with concomitant compaction of the nucleoid. However, under all conditions, spatial segregation of the ribosomes and the nucleoids is well maintained. In dividing cells, ribosomes accumulate on both sides of the FtsZ ring at the mid cell. However, the distribution of the ribosomes among the new daughter cells is often unequal. Both the shape of the nucleoid and the pattern of ribosome distribution are also modified when the cells are exposed to rifampicin (transcription inhibitor), nalidixic acid (gyrase inhibitor), or A22 (MreB-cytoskeleton disruptor). Thus we conclude that the intracellular organization of the ribosomes and the nucleoids in bacteria are dynamic and critically dependent on cellular growth processes (replication, transcription, and translation) as well as on the integrity of the MreB cytoskeleton.


Assuntos
Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/biossíntese , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Ácido Nalidíxico/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Rifampina/farmacologia , Inibidores da Topoisomerase II/farmacologia
13.
J Biol Chem ; 289(5): 2864-72, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24356961

RESUMO

Cellular mitochondrial content is governed by the competing processes of organelle biogenesis and degradation. It is proposed that these programs are tightly regulated to ensure that the cell maintains sufficient organelles to meet its biosynthetic, energetic, and other homeostatic requirements. We recently reported that GCN5L1, a putative nutrient-sensing regulator, controls mitochondrial removal by autophagy. Here we show that genetic deletion of GCN5L1 has a direct positive effect on the expression and activity of Transcriptional Factor EB (TFEB), which acts as a master regulator of autophagy. Surprisingly, the induction of TFEB-mediated autophagy pathways does not diminish cellular mitochondrial content, as its activity is countered by induction of the mitochondrial biogenesis transcriptional co-activator PPARγ coactivator 1α (PGC-1α). Concurrent induction of the TFEB and PGC-1α pathways results in an increased mitochondrial turnover rate in GCN5L1(-/-) cells. Finally, we show that genetic knockdown of either TFEB or PGC-1α leads to a corresponding decrease in the expression of the other gene, indicating that these proteins act coordinately, and in opposition, to maintain cellular mitochondrial content in response to the modulation of nutrient-sensing signatures.


Assuntos
Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Fibroblastos/citologia , Homeostase/fisiologia , Lisossomos/fisiologia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 288(41): 29633-41, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24019514

RESUMO

In both eukaryotic and prokaryotic cells, it has been recently established that mRNAs encoding secreted and membrane proteins can be localized to the surface of membranes via both translation-dependent and RNA element-mediated mechanisms. Previously, we showed that the placental alkaline phosphatase (ALPP) mRNA can be localized to the ER membrane independently of translation, and this localization is mediated by p180, an mRNA receptor present in the ER. In this article, we aimed to identify the cis-acting RNA element in ALPP. Using chimera constructs containing fragments of the ALPP mRNA, we demonstrate that the ER-localizing RNA element is present within the 3' end of the open reading frame and codes for a transmembrane domain. In addition, we show that this region requires p180 for efficient ER anchoring. Taken together, we provide the first insight into the nature of cis-acting ER-localizing RNA elements responsible for localizing mRNAs on the ER in mammalian cells.


Assuntos
Fosfatase Alcalina/genética , Retículo Endoplasmático/metabolismo , Isoenzimas/genética , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Fosfatase Alcalina/metabolismo , Animais , Sítios de Ligação/genética , Northern Blotting , Western Blotting , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunofluorescência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Isoenzimas/metabolismo , Biossíntese de Proteínas/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
J Biol Chem ; 288(40): 28704-12, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23979137

RESUMO

Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Organelas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Metilação , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Vacúolos/metabolismo
16.
J Biol Chem ; 288(40): 29151-9, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23963456

RESUMO

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.


Assuntos
Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Humanos , Camundongos , Modelos Biológicos , Receptor 1 de Sinal de Orientação para Peroxissomos , Sinais Direcionadores de Proteínas , Transporte Proteico , Frações Subcelulares/metabolismo , Temperatura
17.
J Biol Chem ; 288(42): 30172-30180, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24019528

RESUMO

Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endossomos/química , Endossomos/genética , Endossomos/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/química , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
18.
J Biol Chem ; 288(28): 20100-9, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23720751

RESUMO

The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12-14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.


Assuntos
Parede Celular/metabolismo , Diatomáceas/metabolismo , Oligopeptídeos/metabolismo , Peptídeos/metabolismo , Dióxido de Silício/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Parede Celular/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Diatomáceas/genética , Diatomáceas/ultraestrutura , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Oligopeptídeos/genética , Peptídeos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico
19.
J Biol Chem ; 288(46): 33361-75, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24078636

RESUMO

The intracellular Ca(2+) signaling pathway is important for the control of broad cellular processes from fertilization to cell death. ALG-2 is a Ca(2+)-binding protein that contains five serially repeated EF-hand motifs and interacts with various proteins in a Ca(2+)-dependent manner. Although ALG-2 is present both in the cytoplasm and in the nucleus, little is known about its nuclear function. Ca(2+) homeostasis endoplasmic reticulum protein (CHERP) was first identified as an endoplasmic reticulum protein that regulates intracellular Ca(2+) mobilization in human cells, but recent proteomics data suggest an association between CHERP and spliceosomes. Here, we report that CHERP, containing a Pro-rich region and a phosphorylated Ser/Arg-rich RS-like domain, is a novel Ca(2+)-dependent ALG-2-interactive target in the nucleus. Immunofluorescence microscopic analysis revealed localization of CHERP to the nucleoplasm with prominent accumulation at nuclear speckles, which are the sites of storage and modification for pre-mRNA splicing factors. Live cell time-lapse imaging showed that nuclear ALG-2 was recruited to the CHERP-localizing speckles upon Ca(2+) mobilization. Results of co-immunoprecipitation assays revealed binding of CHERP to a phosphorylated form of RNA polymerase II. Knockdown of CHERP or ALG-2 in HT1080 cells resulted in generation of alternatively spliced isoforms of the inositol 1,4,5-trisphosphate receptor 1 (IP3R1) pre-mRNA that included exons 41 and 42 in addition to the major isoform lacking exons 40-42. Furthermore, binding between CHERP and IP3R1 RNA was detected by an RNA immunoprecipitation assay using a polyclonal antibody against CHERP. These results indicate that CHERP and ALG-2 participate in regulation of alternative splicing of IP3R1 pre-mRNA and provide new insights into post-transcriptional regulation of splicing variants in Ca(2+) signaling pathways.


Assuntos
Processamento Alternativo/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/biossíntese , Proteínas de Membrana/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Membrana/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética
20.
J Biol Chem ; 288(26): 19154-65, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23653353

RESUMO

The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.


Assuntos
Furina/química , Histidina/química , Peptídeos/química , Dicroísmo Circular , Ativação Enzimática , Glicerol/química , Humanos , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Prótons , Termodinâmica , Fatores de Tempo , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA