Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119901, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241858

RESUMO

In this study, a peracetic acid (PAA) alone process was systematically demonstrated to give a high efficiency in the selective degradation of sulfonamide antibiotics (SAs). The employment of scavengers and probe compounds in this process demonstrates the predominant role of PAA in direct oxidation, and the limited role of carbon-centered radicals (R-O•) in the degradation of representative SA, sulfamethazine (SMT). The process also exhibits high tolerance towards solution pH and competing anions in wastewater, indicating its applicability in enhancing the biodegradation of SAs in wastewater. Furthermore, the relationships between the observed rate constants (kobs) and the molecule descriptors for ten SA compounds are demonstrated through the assessment of structure-activity relationships, calculated from density functional theory (DFT). This study gives new insights into the selectivity, performance and mechanism of PAA direct-oxidation in SA degradation.

2.
Environ Res ; 250: 118559, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412912

RESUMO

Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.


Assuntos
Agave , Carvão Vegetal , Sulfametazina , Poluentes Químicos da Água , Adsorção , Sulfametazina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Agave/química , Purificação da Água/métodos
3.
Biomed Chromatogr ; 38(2): e5781, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994231

RESUMO

Sulfamethazine (SMZ), trimethoprim (TMP) and doxycycline (DOXY) are drugs of choice used in the treatment of intestinal and respiratory infections that affect poultry and swine. The aim of this study was develop and validate a simple, sensitive and fast method for the simultaneous determination of SMZ, TMP and DOXY in veterinary formulations by high-performance liquid chromatography. The separation was performed on a Macherey-Nagel C8 analytical column (4 × 125 mm, 5 µm), with a flow rate of 0.5 ml min-1 and detection at 268, 270 and 350 nm, for SMZ, TMP and DOXY, respectively. All measurements were performed in acetonitrile-water (45:55 v/v; pH 3.0). The analytical curves were linear (r > 0.9997) in the concentration range of 5.0-35.0 µg ml-1 for SMZ, 1.0-7.0 µg ml-1 for TMP and 7.0-13.0 µg ml-1 for DOXY. The method proved to be precise, robust, accurate and selective. In accelerated stability, the sample was analyzed for 6 months, with no major variations observed in organoleptic analysis and pH. Therefore, the developed method was proved to be suitable for routine quality control analyses for the simultaneous determination of SMZ, TMP and DOXY in pharmaceutical formulations.


Assuntos
Sulfametazina , Trimetoprima , Animais , Suínos , Trimetoprima/análise , Cromatografia Líquida de Alta Pressão/métodos , Sulfametazina/análise , Doxiciclina , Água
4.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275755

RESUMO

The most frequently used sulfonamide is sulfamethazine (SMZ) because it is often found in foods made from livestock, which is hazardous for individuals. Here, we have developed an easy, quick, selective, and sensitive analytical technique to efficiently detect SMZ. Recently, transition metal oxides have attracted many researchers for their excellent performance as a promising sensor for SMZ analysis because of their superior redox activity, electrocatalytic activity, electroactive sites, and electron transfer properties. Further, Cu-based oxides have a resilient electrical conductivity; however, to boost it to an extreme extent, a composite including two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets needs to be constructed and ready as a composite (denoted as g-C3N4/Cu2Y2O5). Moreover, several techniques, including X-ray diffraction analysis, scanning electron microscopy analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy were employed to analyze the composites. The electrochemical measurements have revealed that the constructed g-C3N4/Cu2Y2O5 composites exhibit great electrochemical activity. Nevertheless, the sensor achieved outstanding repeatability and reproducibility alongside a low limit of detection (LOD) of 0.23 µM, a long linear range of 2 to 276 µM, and an electrode sensitivity of 8.86 µA µM-1 cm-2. Finally, the proposed GCE/g-C3N4/Cu2Y2O5 electrode proved highly effective for detection of SMZ in food samples, with acceptable recoveries. The GCE/g-C3N4/Cu2Y2O5 electrode has been successfully applied to SMZ detection in food and water samples.


Assuntos
Cobre , Técnicas Eletroquímicas , Análise de Alimentos , Grafite , Sulfametazina , Técnicas Eletroquímicas/métodos , Grafite/química , Sulfametazina/análise , Sulfametazina/química , Cobre/química , Cobre/análise , Análise de Alimentos/métodos , Compostos de Nitrogênio/química , Limite de Detecção , Eletrodos , Contaminação de Alimentos/análise , Água/química , Reprodutibilidade dos Testes
5.
J Environ Sci Health B ; 59(7): 425-436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847499

RESUMO

Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.


Assuntos
Anti-Infecciosos , Concentração de Íons de Hidrogênio , Poluentes do Solo , Sulfametazina , Sulfametazina/análise , Sulfametazina/química , Poluentes do Solo/análise , Poluentes do Solo/química , Anti-Infecciosos/análise , Anti-Infecciosos/química , Cromatografia Líquida , Salinidade
6.
Environ Res ; 232: 116351, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327844

RESUMO

The emerging contaminants removal from the environment has recently been raised concerns due to their presence in higher concentrations. Over usage of emerging contaminant such as sulfamethazine poses serious threat to the aquatic and human health as well. This study deals with rationally structured a novel BiOCl (110)/NrGO/BiVO4 heterojunction which is used to detoxify sulfamethazine (SMZ) antibiotic efficiently. The synthesised composite was well characterized and the morphological analysis evidenced the formation of heterojunction consisted of nanoplates BiOCl with dominant exposed (110) facets and leaf like BiVO4 on NrGO layers. Further results revealed that the addition of BiVO4 and NrGO tremendously increased the photocatalytic degradation efficiency of BiOCl with the rate of 96.9% (k = 0.01783 min-1) towards SMZ within 60 min of visible light irradiation. Furthermore, heterojunction energy-band theory was employed to determine the degradation mechanism of SMX in this study. The larger surface area of BiOCl and NrGO layers are believed to be the reason for higher activity which facilitates the excellent charge transfer and improved light absorption. In addition, SMZ degradation products identification was carried out by LC-ESI/MS/MS to determine the pathway of degradation. The toxicity assessment was studied using E. coli as a model microorganism through colony forming unit assay (CFU), and the results indicated a significant reduction in biotoxicity was observed in 60 min of degradation process. Thus, our work gives new methods in developing various materials that effectively treat emerging contaminants from the aqueous environment.


Assuntos
Sulfametazina , Poluentes Químicos da Água , Humanos , Sulfametazina/toxicidade , Espectrometria de Massas em Tandem , Escherichia coli , Bismuto/análise , Catálise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Mikrochim Acta ; 190(5): 169, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016038

RESUMO

Molecularly imprinted polymers (MIPs) were combined with surface-enhanced Raman scattering (SERS) and AgNPs were prepared by in situ reduction within the MIP for selective and sensitive detection of sulfamethazine (SMZ). The MIP@AgNPs composites were characterized in detail by several analytical techniques, showing the generation of polymers and the formation of AgNPs hot spots. The specific affinity and rapid adsorption equilibrium rates of MIP@AgNPs composites were verified by static and kinetic adsorption studies. The MIP@AgNPs with high selectivity and excellent sensitivity were used as SERS substrates to detect SMZ. A good linear correlation (R2 = 0.996) in rang of 10-10-10-6 mol L-1 was observed between the Raman signal (1596 cm-1) and the concentration of SMZ. The limit of detection (LOD) was as low as 8.10 × 10-11 mol L-1 with relative standard deviations (RSD) of 6.32%. The good stability and reproducibility are also fully reflected in the SERS detection based on MIP@AgNPs. The method was successfully applied to the analysis of lake water samples, with recoveries in the range 85.1% to 102.5%. In summary, SERS detection based on MIP@AgNPs can be developed for a wider and broader range of practical applications. Schematic illustration of MIP@AgNPs sensor for the SERS detection of sulfamethazine.

8.
J Environ Sci (China) ; 127: 399-409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522071

RESUMO

As a new type of environmental pollutant, antibiotic resistance genes (ARGs) pose a huge challenge to global health. Horizontal gene transfer (HGT) represents an important route for the spread of ARGs. The widespread use of sulfamethazine (SM2) as a broad-spectrum bacteriostatic agent leads to high residual levels in the environment, thereby increasing the spread of ARGs. Therefore, we chose to study the effect of SM2 on the HGT of ARGs mediated by plasmid RP4 from Escherichia coli (E. coli) HB101 to E. coli NK5449 as well as its mechanism of action. The results showed that compared with the control group, SM2 at concentrations of 10 mg/L and 200 mg/L promoted the HGT of ARGs, but transfer frequency decreased at concentrations of 100 mg/L and 500 mg/L. The transfer frequency at 200 mg/L was 3.04 × 10-5, which was 1.34-fold of the control group. The mechanism of SM2 improving conjugation transfer is via enhancement of the mRNA expression of conjugation genes (trbBP, trfAP) and oxidative stress genes, inhibition of the mRNA expression of vertical transfer genes, up regulation of the outer membrane protein genes (ompC, ompA), promotion of the formation of cell pores, and improvement of the permeability of cell membrane to promote the conjugation transfer of plasmid RP4. The results of this study provide theoretical support for studying the spread of ARGs in the environment.


Assuntos
Antibacterianos , Sulfametazina , Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , RNA Mensageiro
9.
Environ Sci Technol ; 56(21): 15054-15063, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069710

RESUMO

Antibiotic resistance genes (ARGs) are global pollutants that pose a potential risk to human health. Benzalkonium chloride (C12) (BC) disinfectants are thought to exert selection pressure on antibiotic resistance. However, evidence of BC-induced changes in antibiotic resistance in the soil environment is lacking. Here, we established short-term soil microcosms to investigate ARG profile dynamics in agricultural soils amended with sulfamethazine (SMZ, 10 mg kg-1) and gradient concentrations of BC (0-100 mg kg-1), using high-throughput quantitative PCR and Illumina sequencing. With the increase in BC concentration, the number of ARGs detected in the soil increased, but the normalized ARG abundance decreased. The added SMZ had a limited impact on ARG profiles. Compared to broad-spectrum fungicidal BC, the specificity of SMZ significantly affected the microbial community. Network analysis found that low-medium BC exposure concentrations resulted in the formation of small but strong ARG co-occurrence clusters in the soil, while high BC exposure concentration led to a higher incidence of ARGs. Variation partitioning analysis suggested that BC stress was the major driver shaping the ARG profile. Overall, this study highlighted the emergence and spread of BC-induced ARGs, potentially leading to the antimicrobial resistance problem in agricultural soils.


Assuntos
Compostos de Benzalcônio , Solo , Humanos , Compostos de Benzalcônio/farmacologia , Microbiologia do Solo , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Esterco
10.
Ecotoxicol Environ Saf ; 245: 114110, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155339

RESUMO

Antibiotic residue has become an emerging environmental contaminant, while the toxicological effects and underlying mechanisms caused by the co-exposure to multiple veterinary antibiotics were rarely studied. In this study, male Sprague Dawley rats were exposed to monensin (M) (1, 2, 10 mg/(kg·body weight (BW)) combined with sulfamethazine (S) (60, 120, 600 mg/(kg·BW)) or single drugs for 28 consecutive days. The body weight, hematological and blood biochemical parameters, organ coefficients, and histopathology were analyzed to discover their combined toxicity effect. Transcriptomic analysis was used to reveal the possible mechanisms of their joint toxicity. Compared with the control group, the weight gain rate was significantly reduced in the H-M+S and H-S, and alkaline phosphatase in H-M+S was significantly increased. Furthermore, relative liver and kidneys weight was significantly increased, and the liver of H-M+S showed more severe lesions in histopathological analysis. For H-M+S, H-M and H-S, transcriptomic results showed that 344, 246, and 99 genes were differentially expressed, respectively. The Gene Ontology terms mainly differ in sterol biosynthetic process and steroid hydroxylase activity. The Kyoto Encyclopedia of Genes and Genome pathways showed abnormal retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism-cytochrome 450; the common 30 genes were screened from the network of protein-protein interaction. The results showed that mixed contamination of M and S produces hepatotoxicity by interfering with linoleic acid metabolism, retinol metabolism and CYP450 enzyme-dominated drug metabolism. Further analysis showed that Cyp1a2, Cyp2c61, Ugt1a3, and Ugt1a5 might be the key genes. These findings could provide more evidence for investigating the toxic effects and metabolism of mixed antibiotics contamination in mammals.


Assuntos
Monensin , Sulfametazina , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Peso Corporal , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Linoleico , Fígado , Masculino , Mamíferos/metabolismo , Monensin/toxicidade , Ratos , Ratos Sprague-Dawley , Esteroide Hidroxilases/metabolismo , Esteroide Hidroxilases/farmacologia , Esteróis/metabolismo , Esteróis/farmacologia , Sulfametazina/toxicidade , Transcriptoma , Vitamina A/metabolismo , Xenobióticos/metabolismo
11.
Mikrochim Acta ; 189(12): 453, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411347

RESUMO

A photoelectrochemical (PEC) aptasensor based on CdSe@SnS2 nanocomposite has been developed to detect sulfamethazine (SMZ). The introduction of CdSe into SnS2 displayed an amplified PEC signal, which was higher than that of pure CdSe and SnS2, attributable to its enhanced light harvesting capacity and promoted PEC energy conversion efficiency. Due to the formation of specific non-covalent bonds, the SMZ-binding aptamer (SBA) has significant specificity and sensitivity. When SMZ was incubated on a CdSe@SnS2 modified electrode fixed with aminated SBA, the formation of the SMZ/SBA complex increased the space resistance of electron transfer and hindered the electronic migration between the electrodes, resulting in a decrease in photocurrent. The greater the adsorbed amount on the SBA, the lower the photocurrent produced.  Under optimized conditions the photocurrent response of MCH/SBA/CdSe@SnS2/FTO was inversely proportional to the SMZ concentration in the range 0.1 to 100 pM, with a detection limit (3 S/N) of 0.025 pM (at 0 V vs. Hg/HgCl). The recoveries ranged from 95.8 to 104% with relative standard deviations (RSDs) < 6.3% (n = 3) in actual water sample. This PEC aptasensor which shows considerable potential in SMZ detection applications has high selectivity, reproducibility, and good stability.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanocompostos , Compostos de Selênio , Sulfametazina , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Titânio/química , Compostos de Selênio/química , Nanocompostos/química
12.
Mikrochim Acta ; 189(2): 71, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072770

RESUMO

Sulfamethazine (SMZ) is one of the most used broad-spectrum antibiotics owing to its low cost and high efficacy towards bacterial diseases. This workreports a novel label-free SMZ sensor based on para-sulfonatocalix[4]arene (pSC4) capped gold nanoparticles (pSC4-AuNPs) for colorimetric detection through the host-guest interaction. The existence of SMZ resulted in the aggregation of pSC4-AuNPs and can be observed through colorimetric assay. A good linear relationship in the range 2.5 ~ 20 nM was obtained with a correlation coefficient of 0.9908. The limit of detection for SMZ was 1.39 nM. High recoveries (90.18-107.06%) were obtained, and RSD ranged from 1.21 to 2.05%. The color changes can be observed from red to gray within 10 min. Combining the supermolecule's recognition and AuNP's optical performance, the method paves a new, easy, and rapid way for small target sensing.


Assuntos
Calixarenos/química , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Sulfametazina/química
13.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432176

RESUMO

The extensive use of sulfonamides seriously threatens the safety and stability of the ecological environment. Developing green inexpensive and effective adsorbents is critically needed for the elimination of sulfonamides from wastewater. The non-modified biochar exhibited limited adsorption capacity for sulfonamides. In this study, the attapulgite-doped biochar adsorbent (ATP/BC) was produced from attapulgite and rice straw by calcination. Compared with non-modified biochar, the specific surface area of ATP/BC increased by 73.53−131.26%, and the average pore width of ATP/BC decreased 1.77−3.60 nm. The removal rates of sulfadiazine and sulfamethazine by ATP/BC were 98.63% and 98.24%, respectively, at the mass ratio of ATP to rice straw = 1:10, time = 4 h, dosage = 2 g∙L−1, pH = 5, initial concentration = 1 mg∙L−1, and temperature = 20 °C. A pseudo-second-order kinetic model (R2 = 0.99) and the Freundlich isothermal model (R2 = 0.99) well described the process of sulfonamide adsorption on ATP/BC. Thermodynamic calculations showed that the adsorption behavior of sulfonamides on the ATP/BC was an endothermic (ΔH > 0), random (ΔS > 0), spontaneous reaction (ΔG < 0) that was dominated by chemisorption (−20 kJ∙mol−1 > ΔG). The potential adsorption mechanisms include electrostatic interaction, hydrogen bonding, π−π interaction, and Lewis acid−base interactions. This study provides an optional material to treat sulfonamides in wastewater and groundwater.


Assuntos
Oryza , Poluentes Químicos da Água , Adsorção , Sulfonamidas , Águas Residuárias , Poluentes Químicos da Água/análise , Sulfanilamida , Trifosfato de Adenosina
14.
J Food Sci Technol ; 59(5): 1931-1938, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531413

RESUMO

The whole milk spiked with sulfamethazine was treated under thermal and pulsed electric field processing for maximum reduction. The low-temperature long-time (LTLT, 62.5 °C for 30 min), high-temperature short time (HTST, 72 °C for 15 s) pasteurization and ultra-high temperature processing (UHT, 138 °C for 2 s) resulted in the reduction of sulfamethazine 7.3, 5.2 and 4.6% respectively. PEF and combination treatment (thermal + PEF) were found to reduce sulfamethazine content in milk by 67-72% and 73-76% respectively. Combined treatment of milk resulted in a higher percentage of reduction. Similar predicted and actual values proved that they fit the linear regression model and successful application of pulsed electric field technology in reducing antibiotic residues. PEF and mild thermal treatment can be a promising technology to reduce the antibiotic residues with ensuring minimal negative impact on the nutritional quality of food.

15.
Anal Bioanal Chem ; 413(3): 901-909, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33184760

RESUMO

We developed a fluorescent aptamer/graphene oxide (GO)-based biosensor to detect sulfamethazine (SMZ) residues in animal-derived foods. The SMZ-bound aptamers were identified and screened with an improved GO-SELEX technique using non-immobilizing ssDNA library. After seven rounds of selection, six SMZ aptamers were sequenced and analyzed for secondary structure, and their affinity and specificity were assessed by binding assays. The truncated aptamer (SMZ1S: 5'-CGTTAGACG-3') with a unique stem-loop structure showed the highest affinity (Kd = 24.6 nM) to SMZ and was used to develop a GO-based fluorescent aptasensor. The binding mechanism between SMZ1S and SMZ was further analyzed by molecular docking. Under optimal conditions, the fluorescent aptasensor showed low detection limits (0.35 ng/mL) and a wide dynamic linear range (from 2 to 100 ng/mL). The aptasensor was also validated against real samples spiked with SMZ, which showed a fluorescence recovery from 93.9 to 108.8% and a coefficient of variation of < 12.7%. Taken together, these results suggest that this novel aptasensor can be used to sensitively, selectively, and accurately detect SMZ residues in foods. Schematic illustration of fluorescent aptasensor based on aptamer/graphene oxide complex detection of of SMZ.


Assuntos
Anti-Infecciosos/análise , Aptâmeros de Nucleotídeos/análise , Contaminação de Alimentos/análise , Grafite/química , Sulfametazina/análise , Animais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , DNA de Cadeia Simples/química , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , Simulação de Acoplamento Molecular , Estrutura Molecular , Reação em Cadeia da Polimerase/métodos , Técnica de Seleção de Aptâmeros/métodos
16.
J Sep Sci ; 44(13): 2536-2544, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33929080

RESUMO

Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm. A series of adsorption experiments showed that the maximum adsorption capacity reached 12.5 mg⋅g-1 , and the adsorption equilibrium was achieved within 80 min. Moreover, the imprinted polymers display excellent reusability, with almost no performance loss after four times photo-controlled adsorption-release cycles, and the imprinted polymers have excellent selectively for sulfamethazine (imprinting factor  = 3.01). In the end, the imprinted polymers realized effective separation and enrichment of sulfamethazine in milk, with a recovery rate of over 97.5%. The material can be used as a solid-phase extractant in the process of enrichment and separation for the quantitative detection of sulfamethazine in milk samples.


Assuntos
Benzenossulfonatos/química , Sulfametazina/análise , Adsorção , Animais , Limite de Detecção , Leite/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Polimetil Metacrilato/química , Extração em Fase Sólida/métodos
17.
Ecotoxicol Environ Saf ; 226: 112820, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571422

RESUMO

Antibiotics and nanoplastics are two prevalent pollutants in oceans, posing a great threat to marine ecosystems. As antibiotics and nanoplastics are highly bioconcentrated in lower trophic levels, evaluating their impacts on marine organisms via dietary exposure route is of great importance. In this study, the individual and joint effects of dietborne sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) in marine medaka (Oryzias melastigma) were investigated. After 30 days of dietary exposure, 4.62 mg/g SMZ decreased the Chao1 index (60.86% for females and 26.85% for males) and the Shannon index (68.95% for females and 65.05% for males) and significantly altered the structure of gut microbial communities in both sexes. The female fish exposed to 4.62 mg/g SMZ exhibited higher intestinal sod (43.5%), cat (38.5%) and gpx (39.6%) transcripts, indicating oxidative stress in the gut. PS alone at 3.45 mg/g slightly altered the composition of the gut microbiota. Interestingly, the mixture of SMZ and PS caused more modest effects on the gut microbiota and intestinal antioxidant physiology than the SMZ alone, suggesting that the presence of PS might alleviate the intestinal toxicity of SMZ in a scenario of dietary co-exposure. This study helps better understand the risk of antibiotics and nanoplastics to marine ecosystems.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Ecossistema , Feminino , Masculino , Microplásticos , Estresse Oxidativo , Sulfametazina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Sensors (Basel) ; 21(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640926

RESUMO

Sulfamethazine (SMZ) as a broad antibiotic is widely used in livestock and poultry. However, the abuse of SMZ in livestock feed can lead to SMZ residues in food and the resistance of bacteria to drugs. Thus, a method for the detection of SMZ in food is urgently needed. In this study, quantum dot (QD) nanobeads (QBs) were synthesized by encapsulating CdSe/ZnS QDs using a microemulsion technique. The prepared QBs as signal probes were applied in lateral flow immunoassay (LFIA) for the detection of SMZ in chicken and milk. Our proposed method had limits of detection of 0.1138-0.0955 ng/mL and corresponding linear ranges of 0.2-12.5, 0.1-15 ng/mL in chicken and milk samples, respectively. The recovery of LFIA for the detection of SMZ was 80.9-109.4% and 84-101.6% in chicken and milk samples, respectively. Overall, the developed QBs-LFIA had high reliability and excellent potential for rapid and sensitive screening of SMZ in food.


Assuntos
Pontos Quânticos , Animais , Galinhas , Imunoensaio , Leite/química , Reprodutibilidade dos Testes , Sulfametazina/análise
19.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946670

RESUMO

Solubility of sulfamethazine (SMT) in acetonitrile (MeCN) + methanol (MeOH) cosolvents was determined at nine temperatures between 278.15 and 318.15 K. From the solubility data expressed in molar fraction, the thermodynamic functions of solution, transfer and mixing were calculated using the Gibbs and van 't Hoff equations; on the other hand, the solubility data were modeled according to the Wilson models and NRTL. The solubility of SMT is thermo-dependent and is influenced by the solubility parameter of the cosolvent mixtures. In this case, the maximum solubility was achieved in the cosolvent mixture w0.40 at 318.15 K and the minimum in pure MeOH at 278.15 K. According to the thermodynamic functions, the SMT solution process is endothermic in addition to being favored by the entropic factor, and as for the preferential solvation parameter, SMT tends to be preferentially solvated by MeOH in all cosolvent systems; however, δx3,1<0.01, so the results are not conclusive. Finally, according to mean relative deviations (MRD%), the two models could be very useful tools for calculating the solubility of SMT in cosolvent mixtures and temperatures different from those reported in this research.

20.
J Sci Food Agric ; 101(2): 684-692, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32705699

RESUMO

BACKGROUND: Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples. RESULTS: Under optimized working conditions, this method had limits of detection of 0.016, 0.049, and 0.029 ng mL-1 and corresponding linear ranges of 0.05 to 1.00, 0.05 to 5.00, and 0.05 to 1.00 ng mL-1 in egg, honey, and pork samples, respectively. The recovery experiments showed that the average recoveries ranged from 90.5% to 113.9%, 82.4% to 112.0%, and 79.8% to 93.4% with corresponding coefficients of variation of 4.1% to 11.7%, 7.5% to 11.5%, and 4.8% to 8.7% for egg, honey, and pork samples, respectively. The developed TRFN-ICA was also systematically compared with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) by analyzing 45 actual samples from egg, honey, and pork. CONCLUSION: Overall, the developed TRFN-ICA had high reliability and excellent potential for the ultrasensitive detection of SMZ for food safety monitoring, also providing a universal platform for the on-site detection of other targets. © 2020 Society of Chemical Industry.


Assuntos
Anti-Infecciosos/análise , Ovos/análise , Contaminação de Alimentos/análise , Mel/análise , Imunoensaio/métodos , Carne/análise , Sulfametazina/análise , Drogas Veterinárias/análise , Animais , Galinhas , Imunoensaio/instrumentação , Limite de Detecção , Nanopartículas/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA