Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2219950120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913567

RESUMO

High areal capacitance for a practical supercapacitor electrode requires both large mass loading and high utilization efficiency of electroactive materials, which presents a great challenge. Herein, we demonstrated the unprecedented synthesis of superstructured NiMoO4@CoMoO4 core-shell nanofiber arrays (NFAs) on a Mo-transition-layer-modified nickel foam (NF) current collector as a new material, achieving the synergistic combination of highly conductive CoMoO4 and electrochemical active NiMoO4. Moreover, this superstructured material exhibited a large gravimetric capacitance of 1,282.2 F/g in 2 M KOH with a mass loading of 7.8 mg/cm2, leading to an ultrahigh areal capacitance of 10.0 F/cm2 that is larger than any reported values of CoMoO4 and NiMoO4 electrodes. This work provides a strategic insight for rational design of electrodes with high areal capacitances for supercapacitors.

2.
Nano Lett ; 24(15): 4554-4561, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573122

RESUMO

Three-dimensionally (3D) integrated metallic nanomaterials composed of two or more different types of nanostructures make up a class of advanced materials due to the multidimensional and synergistic effects between different components. However, designing and synthesizing intricate, well-defined metallic 3D nanomaterials remain great challenges. Here, a novel single-particle soft-enveloping strategy using a core-shell Au NP@mSiO2 particle as a template was proposed to synthesize 3D nanomaterials, namely, a Au nanoparticle@center-radial nanorod-Au-Pt nanoparticle (Au NP@NR-NP-Pt NP) superstructure. Taking advantage of the excellent plasmonic properties of Au NP@NR-NP by the synergistic plasmonic coupling of the outer Au NPs and inner Au nanorods, we can enhance the catalytic performance for 4-nitrophenol hydrogenation using Au NP@NR-NP-Pt NP as a photocatalyst with plasmon-excited hot electrons from Au NP@NR-NP under light irradiation, which is 2.76 times higher than in the dark. This process opens a door for the design of a new generation of 3D metallic nanomaterials for different fields.

3.
Small ; 20(34): e2402058, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607256

RESUMO

Chiral organic additives have unveiled the extraordinary capacity to form chiral inorganic superstructures, however, complex hierarchical structures have hindered the understanding of chiral transfer and growth mechanisms. This study introduces a simple hydrothermal synthesis method for constructing chiral cobalt superstructures with cysteine, demonstrating specific recognition of chiral molecules and outstanding electrocatalytic activity. The mild preparation conditions allow in situ tracking of chirality evolution in the chiral cobalt superstructure, offering unprecedented insights into the chiral transfer and amplification mechanism. The resulting superstructures exhibit a universal formation process applicable to other metal oxides, extending the understanding of chiral superstructure evolution. This work contributes not only to the fundamental understanding of chirality in self-assembled structures but also provides a versatile method for designing chiral inorganic nanomaterials with remarkable molecular recognition and electrocatalytic capabilities.

4.
Small ; 20(35): e2310416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38660815

RESUMO

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.


Assuntos
Peptídeos , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Nanofibras/química
5.
Small ; 20(24): e2308956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183403

RESUMO

The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2P nanoparticles embedded N-doped carbon superstructure (Co2P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2. Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.

6.
Small ; : e2403331, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898749

RESUMO

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

7.
Small ; : e2405940, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180267

RESUMO

Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.

8.
Small ; 20(33): e2311267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38534041

RESUMO

The controllable construction of complex metal-organic coordination polymers (CPs) merits untold scientific and technological potential, yet remains a grand challenge of one-step construction and modulating simultaneously valence states of metals and topological morphology. Here, a thiocyanuric acid (TCA)-triggered strategy is presented to one-step rapid synthesis a double-crystalline Prussian blue analogue hetero-superstructure (PBA-hs) that comprises a Co3[Fe(CN)6]2 cube overcoated with a KCo[Fe(CN)6] shell, followed by eight self-assembled small cubes on vertices. Unlike common directing surfactants, TCA not only acts as a trigger for the fast growth of KCo[Fe(CN)6] on the Co3[Fe(CN)6]2 phase resulting in a PBA-on-PBA hetero-superstructure, but also serves as a flange-like bridge between them. By combining experiments with simulations, a deprotonation-induced electron transfer (DIET) mechanism is proposed for formation of second phase in PBA-hs, differing from thermally and photo-induced electron transfer processes. To prove utility, the calcined PBA-hs exhibits enhanced oxygen evolution reaction performance. This work provides a new method to design of novel CPs for enriching chemistry and material science. This work offers a practical approach to design novel CPs for enriching chemistry and material science.

9.
Anal Bioanal Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739158

RESUMO

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 µM, and the limit of detection is 17.5 µM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

10.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257569

RESUMO

Switches are an essential, safety-critical part of the railway infrastructure. Compared to open tracks, their complex geometry leads to increased dynamic loading on the track superstructure from passing trains, resulting in high maintenance costs. To increase efficiency, condition monitoring methods specific to railway switches are required. A common approach to track superstructure monitoring is to measure the acceleration caused by vehicle track interaction. Local interruptions in the wheel-rail contact, caused for example by local defects or track discontinuities, appear in the data as transient impact events. In this paper, such transient events are investigated in an experimental setup of a railway switch with track-side acceleration sensors, using frequency and waveform analysis. The aim is to understand if and how the origins of these impact events can be distinguished in the data of this experiment, and what the implications for condition monitoring of local track discontinuities and defects with wayside acceleration sensors are in practice. For the same experimental configuration, individual impact events are shown to be reproducible in waveform and frequency content. Nevertheless, with this track-side sensor setup, the different types of track discontinuities and defects (squats, joints, crossing) could not be clearly distinguished using characteristic frequencies or waveforms. Other factors, such as the location of impact event origin relative to the sensor, are shown to have a much stronger influence. The experimental data suggest that filtering the data to narrow frequency bands around certain natural track frequencies could be beneficial for impact event detection in practice, but differentiating between individual impact event origins requires broadband signals. A multi-sensor setup with time-synchronized acceleration sensors distributed over the switch is recommended.

11.
Nano Lett ; 23(4): 1313-1319, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758116

RESUMO

We report on a novel plasma-assisted approach for the deposition of free-standing two-dimensional superstructures via directed assembly of copper-sulfide nanoplatelets in the gas phase. For this, the copper-organic complex bis-[bis(N,N-diethyldithiocarbamato)-copper(II)] is thermally evaporated and transported into a capacitively coupled rf plasma to form two-dimensional nanoplatelets upon fragmentation. On a substrate, the highly anisotropic platelets are attached in a directed edge-to-edge configuration. We found that a high substrate temperature of 400 °C is necessary for the 2D vertical growth of copper sulfide. Using plasma reinforces the directional assembly and leads to nanowalls which are several micrometers high with the thickness of a single nanoplatelet. The morphology and crystallographic composition of the emerging superstructures were extensively investigated via scanning and transmission electron microscopy as well as electron diffraction. The data reveal the (010) plane to be the preferred axis for the arrangement of the nanoplatelets.

12.
Entropy (Basel) ; 26(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920511

RESUMO

Biorefinery plays a crucial role in the decarbonization of the current economic model, but its high investments and costs make its products less competitive. Identifying the best technological route to maximize operational synergies is crucial for its viability. This study presents a new superstructure model based on mixed integer linear programming to identify an ideal biorefinery configuration. The proposed formulation considers the selection and process scale adjustment, utility selection, and heat integration by heat cascade integration from different processes. The formulation is tested by a study where the impact of new technologies on energy efficiency and the total annualized cost of a sugarcane biorefinery is evaluated. As a result, the energy efficiency of biorefinery increased from 50.25% to 74.5% with methanol production through bagasse gasification, mainly due to its high heat availability that can be transferred to the distillery, which made it possible to shift the bagasse flow from the cogeneration to gasification process. Additionally, the production of DME yields outcomes comparable to methanol production. However, CO2 hydrogenation negatively impacts profitability and energy efficiency due to the significant consumption and electricity cost. Nonetheless, it is advantageous for surface power density as it increases biofuel production without expanding the biomass area.

13.
Angew Chem Int Ed Engl ; : e202409507, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896433

RESUMO

Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.

14.
Angew Chem Int Ed Engl ; 63(33): e202408292, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818627

RESUMO

Redox-active azo compounds are emerging as promising cathode materials due to their multi-electron redox capacity and fast redox response. However, their practical application is often limited by low output voltage and poor thermal stability. Herein, we use a heteroatomic substitution strategy to develop 4,4'-azopyridine. This modification results in a 350 mV increase in reduction potential compared to traditional azobenzene, increasing the energy density at the material level from 187 to 291 Wh kg-1. The introduced heteroatoms not only raise the melting point of azo compounds from 68 °C to 112 °C by forming an intermolecular hydrogen-bond network but also improves electrode kinetics by reducing energy band gaps. Moreover, 4,4'-azopyridine forms metal-ligand complexes with Zn2+ ions, which further self-assemble into a robust superstructure, acting as a molecular conductor to facilitate charge transfer. Consequently, the batteries display a good rate performance (192 mAh g-1 at 20 C) and an ultra-long lifespan of 60,000 cycles. Notably, we disclose that the depleted batteries spontaneously self-charge when exposed to air, marking a significant advancement in the development of self-powered aqueous systems.

15.
Angew Chem Int Ed Engl ; 63(35): e202404330, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38878199

RESUMO

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

16.
Angew Chem Int Ed Engl ; 63(36): e202410255, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38881320

RESUMO

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3 % retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3 % retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

17.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265637

RESUMO

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

18.
Angew Chem Int Ed Engl ; 63(3): e202316835, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38010854

RESUMO

Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.

19.
Angew Chem Int Ed Engl ; : e202408218, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923694

RESUMO

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

20.
Small ; : e2307795, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085109

RESUMO

Transition metal selenides (TMSs) have great potential as cathode materials for alkaline Zn batteries (AZBs) owing to their high theoretical capacity and metallic conductivity. However, achieving a high specific capacity remains a formidable challenge due to the low structural stability and sluggish reaction kinetics of single-phase TMS. Herein, a facile method for fabricating a robust CoSe2 @Ni3 Se4 @Ni(OH)2 superstructure nanoarray (CNSNA) as an AZB cathode is presented. The sophisticated design enables structural stability and abundant active surface sites for efficient charge storage. Furthermore, the redox mediator K3 [Fe(CN)6 ] is employed to expedite the reaction kinetics and introduce supplementary redox reactions, further enhancing the charge storage capability. Consequently, the CNSNA electrode delivers an exceptional specific capacitance (609.08 mAh g-1 at 1 A g-1 ), surpassing all previously reported selenide-based materials. High-rate capability (239.37 mAh g-1 at 20 A g-1 ) and long cycling stability have also been achieved. The comprehensive charge storage mechanism studies confirmed the structural integrity, kinetic improvement, and high reactivity of the CNSNA superstructure. Moreover, the corresponding AZB based on CNSNA demonstrates an extraordinarily high energy density of 516.58 Wh kg-1 . The work offers guidance in the construction of superstructure-based TMS electrode materials, paving the way for the development of high-performance AZBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA