Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949218

RESUMO

Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônios Peptídicos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Hormônios Peptídicos/farmacologia , Multimerização Proteica/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Domínios Proteicos , Humanos
2.
J Biol Chem ; 300(7): 107459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857861

RESUMO

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fatores de Troca do Nucleotídeo Guanina , Proteínas rac1 de Ligação ao GTP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Ligação Proteica , Conformação Proteica , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química
3.
J Biol Chem ; 299(12): 105374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866631

RESUMO

Iron delivery to the plasma is closely coupled to erythropoiesis, the production of red blood cells, as this process consumes most of the circulating plasma iron. In response to hemorrhage and other erythropoietic stresses, increased erythropoietin stimulates the production of the hormone erythroferrone (ERFE) by erythrocyte precursors (erythroblasts) developing in erythropoietic tissues. ERFE acts on the liver to inhibit bone morphogenetic protein (BMP) signaling and thereby decrease hepcidin production. Decreased circulating hepcidin concentrations then allow the release of iron from stores and increase iron absorption from the diet. Guided by evolutionary analysis and Alphafold2 protein complex modeling, we used targeted ERFE mutations, deletions, and synthetic ERFE segments together with cell-based bioassays and surface plasmon resonance to probe the structural features required for bioactivity and BMP binding. We define the ERFE active domain and multiple structural features that act together to entrap BMP ligands. In particular, the hydrophobic helical segment 81 to 86 and specifically the highly conserved tryptophan W82 in the N-terminal region are essential for ERFE bioactivity and Alphafold2 modeling places W82 between two tryptophans in its ligands BMP2, BMP6, and the BMP2/6 heterodimer, an interaction similar to those that bind BMPs to their cognate receptors. Finally, we identify the cationic region 96-107 and the globular TNFα-like domain 186-354 as structural determinants of ERFE multimerization that increase the avidity of ERFE for BMP ligands. Collectively, our results provide further insight into the ERFE-mediated inhibition of BMP signaling in response to erythropoietic stress.


Assuntos
Hepcidinas , Ferro , Hormônios Peptídicos , Domínios Proteicos , Proteínas Morfogenéticas Ósseas/metabolismo , Eritropoese , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Humanos , Linhagem Celular , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Estrutura Terciária de Proteína , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estresse Fisiológico
4.
J Biol Chem ; 299(10): 105254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716701

RESUMO

Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.

5.
J Biol Chem ; 299(11): 105328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806493

RESUMO

The receptor tyrosine kinase MET is activated by hepatocyte growth factor binding, followed by phosphorylation of the intracellular kinase domain (KD) mainly within the activation loop (A-loop) on Y1234 and Y1235. Dysregulation of MET can lead to both tumor growth and metastatic progression of cancer cells. Tepotinib is a highly selective, potent type Ib MET inhibitor and approved for treatment of non-small cell lung cancer harboring METex14 skipping alterations. Tepotinib binds to the ATP site of unphosphorylated MET with critical π-stacking contacts to Y1230 of the A-loop, resulting in a high residence time. In our study, we combined protein crystallography, biophysical methods (surface plasmon resonance, differential scanning fluorimetry), and mass spectrometry to clarify the impacts of A-loop conformation on tepotinib binding using different recombinant MET KD protein variants. We solved the first crystal structures of MET mutants Y1235D, Y1234E/1235E, and F1200I in complex with tepotinib. Our biophysical and structural data indicated a linkage between reduced residence times for tepotinib and modulation of A-loop conformation either by mutation (Y1235D), by affecting the overall Y1234/Y1235 phosphorylation status (L1195V and F1200I) or by disturbing critical π-stacking interactions with tepotinib (Y1230C). We corroborated these data with target engagement studies by fluorescence cross-correlation spectroscopy using KD constructs in cell lysates or full-length receptors from solubilized cellular membranes as WT or activated mutants (Y1235D and Y1234E/1235E). Collectively, our results provide further insight into the MET A-loop structural determinants that affect the binding of the selective inhibitor tepotinib.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos/farmacologia
6.
J Mol Recognit ; 37(3): e3078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400609

RESUMO

Although antibodies, a key element of biorecognition, are frequently used as biosensor probes, the use of these large molecules can lead to adverse effects. Fab fragments can be reduced to allow proper antigen-binding orientation via thiol groups containing Fab sites that can directly penetrate Au sites chemically. In this study, the ability of the surface plasmon resonance (SPR) sensor to detect Salmonella was studied. Tris(2-carboxyethyl)phosphine was used as a reducing agent to obtain half antibody fragments. Sensor surface was immobilized with antibody, and bacteria suspensions were injected from low to high concentrations. Response units were changed by binding first reduced antibody fragments, then bacteria. The biosensor was able to determine the bacterial concentrations between 103 and 108 CFU/mL. Based on these results, the half antibody fragmentation method can be generalized for faster, label-free, sensitive, and selective detection of other bacteria species.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Salmonella enteritidis , Fragmentos Fab das Imunoglobulinas/química , Técnicas Biossensoriais/métodos , Anticorpos
7.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351869

RESUMO

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Anticorpos Monoclonais/química , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície , Glicosilação , Temperatura , Trastuzumab
8.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835076

RESUMO

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Lipopolissacarídeos , Receptor trkB , Animais , Humanos , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Lipopolissacarídeos/farmacologia , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Linhagem Celular Tumoral , Monoterpenos Ciclopentânicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Azeite de Oliva/farmacologia , Azeite de Oliva/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Aldeídos , Glicoproteínas de Membrana , Fenóis
9.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39065935

RESUMO

Silver-based grating structures offer means for implementing low-cost, efficient grating couplers for use in surface plasmon resonance (SPR) sensors. One-dimensional grating structures with a fixed periodicity are confined to operate effectively within a single planar orientation. However, two-dimensional grating structures as well as grating structures with variable periodicity allow for the plasmon excitation angle to be seamlessly adjusted. This study demonstrates silver-based grating designs that allow for the plasmon excitation angle to be adjusted via rotation or beam position. The flexible angle adjustment opens up the possibility of developing SPR sensor designs with an expanded dynamic range and increased flexibility in sensing applications. The results demonstrate that efficient coupling into two diffraction orders is possible, which ultimately leads to an excitation angle range from 16° to 40° by rotating a single structure. The findings suggest a promising direction for the development of versatile and adaptable SPR sensing platforms with enhanced performance characteristics.

10.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732912

RESUMO

The high affinity of the biotin-streptavidin interaction has made this non-covalent coupling an indispensable strategy for the immobilization and enrichment of biomolecular affinity reagents. However, the irreversible nature of the biotin-streptavidin bond renders surfaces functionalized using this strategy permanently modified and not amenable to regeneration strategies that could increase assay reusability and throughput. To increase the utility of biotinylated targets, we here introduce a method for reversibly immobilizing biotinylated thrombin-binding aptamers onto a Ni-nitrilotriacetic acid (Ni-NTA) sensor chip using 6xHis-tagged streptavidin as a regenerable capture ligand. This approach enabled the reproducible immobilization of aptamers and measurements of aptamer-protein interaction in a surface plasmon resonance assay. The immobilized aptamer surface was stable during five experiments over two days, despite the reversible attachment of 6xHis-streptavidin to the Ni-NTA surface. In addition, we demonstrate the reproducibility of this immobilization method and the affinity assays performed using it. Finally, we verify the specificity of the biotin tag-streptavidin interaction and assess the efficiency of a straightforward method to regenerate and reuse the surface. The method described here will allow researchers to leverage the versatility and stability of the biotin-streptavidin interaction while increasing throughput and improving assay efficiency.


Assuntos
Aptâmeros de Nucleotídeos , Biotina , Ácido Nitrilotriacético , Estreptavidina , Ressonância de Plasmônio de Superfície , Estreptavidina/química , Biotina/química , Aptâmeros de Nucleotídeos/química , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Técnicas Biossensoriais/métodos , Trombina/química , Compostos Organometálicos
11.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38544253

RESUMO

We have investigated a polarization property of the (specularly) reflected light from an aluminum grating, coated with a palladium (Pd) thin-film on its surface. The polarization property, which is associated with surface plasmon resonance (SPR), and occurs in the Pd thin-film on the aluminum grating in a conical mounting, is observed as a rapid change in the normalized Stokes parameter s3, around the resonance angle, θsp, at which point, SPR occurs. The sensing technique used the rapid change in s3 to allow us to successfully detect a small change in the complex refractive index of the Pd thin-film layer upon exposure to hydrogen gas, with a concentration near the lower explosion level. Experimental results showed that the sensing technique provided a sensitive and stable response when the Pd thin-film layer was exposed to gas mixtures containing hydrogen at concentrations of 1 to 4% (by volume) in nitrogen.

12.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610328

RESUMO

Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance in the study of H. pylori outer membrane proteins and their identified receptors. In the present study we assess the way in which outer membrane protein-cell receptor reactions are applicable in establishing a reliable diagnosis. Herein, as well as in other previous studies of ours, we explore the reliability of the binding reaction between the best characterized H. pylori adhesin BabA and its receptor, the blood antigen Leb. For the purpose we developed surface plasmon resonance (SPR) and double resonance long period grating (DR LPG) biosensors based on the BabA-Leb binding reaction for diagnosing H. pylori infection. In SPR detection, the sensitivity was estimated at 3000 CFU/mL-a much higher sensitivity than that of the RUT test. The DR LPG biosensor proved to be superior in terms of accuracy and sensitivity-concentrations as low as 102 CFU/mL were detected.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Ressonância de Plasmônio de Superfície , Infecções por Helicobacter/diagnóstico , Reprodutibilidade dos Testes , Antígenos de Bactérias
13.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203840

RESUMO

Programmed death ligand-1 (PD-L1) is highly expressed in a variety of cancer cells and suggests a poorer prognosis for patients. The natural compound isorhamnetin (ISO) shows promise in treating cancers and causing damage to canine mammary tumor (CMT) cells. We investigated the mechanism of ISO in reducing PD-L1 expression in CMT cells. Clustered, regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) was used to mediate CD274 knockout in U27 cells. Then, monoclonal cells were screened and cultured. Nucleotide sequencing and expression of PD-L1 were detected. Additionally, we examined cell migration, invasion, and damage. Immunofluorescent staining of PD-L1 was examined in U27 cells. The signaling pathways were measured by Western blotting. Murine xenotransplantation models and murine immunocompetent allograft mammary tumor models were established to evaluate the effect of ISO therapy. Expression of Ki-67, caspase3, and PD-L1 were analyzed by immunohistochemistry. A pull-down assay was used to explore which proteins could bind to ISO. Canine EGFR protein was purified and used to detect whether it directly binds to ISO using a surface plasmon resonance assay. ISO inhibited the EGFR-STAT3-PD-L1 signaling pathway and blocked cancer growth, significantly increasing the survival rate of healthy cells. The cell membrane receptor EGFR was identified as a direct target of ISO. ISO could be exploited as an antineoplastic treatment of CMT by targeting EGFR to suppress PD-L1 expression.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Quercetina , Animais , Cães , Camundongos , Antígeno B7-H1/genética , Receptores ErbB/genética , Ligantes , Quercetina/análogos & derivados , Transdução de Sinais , Fator de Transcrição STAT3 , Neoplasias da Mama/veterinária
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812197

RESUMO

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Ressonância de Plasmônio de Superfície , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Controle de Qualidade , Humanos , Espectrometria de Massa com Cromatografia Líquida
15.
J Biol Chem ; 298(3): 101669, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120922

RESUMO

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Assuntos
Citocinas , Nicotinamida Fosforribosiltransferase , Receptor 4 Toll-Like , Citocinas/genética , Citocinas/metabolismo , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Biomed Microdevices ; 25(3): 24, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418065

RESUMO

Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Ressonância de Plasmônio de Superfície , MicroRNAs/genética , DNA/genética , Limite de Detecção , Hibridização de Ácido Nucleico
17.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420716

RESUMO

In this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR). More specifically, the doping procedure increases the refractive index of the POF's PMMA in contact with the gold nanofilm, improving the SPR phenomena. The doping of the PMMA was characterized by different analyses in order to determine the effectiveness of the doping procedure. Moreover, experimental results obtained by exploiting different water-glycerin solutions have been used to test the different SPR responses. The achieved bulk sensitivities confirmed the improvement of the plasmonic phenomenon with respect to a similar sensor configuration based on a not-doped PMMA SPR-POF chip. Finally, doped and non-doped SPR-POF platforms were functionalized with a molecularly imprinted polymer (MIP), specific for the bovine serum albumin (BSA) detection, to obtain dose-response curves. These experimental results confirmed an increase in binding sensitivity for the doped PMMA sensor. Therefore, a lower limit of detection (LOD), equal to 0.04 µM, has been obtained in the case of the doped PMMA sensor when compared to the one calculated for the not-doped sensor configuration equal to about 0.09 µM.


Assuntos
Plásticos , Polímeros , Polimetil Metacrilato , Fibras Ópticas , Compostos Férricos , Ressonância de Plasmônio de Superfície/métodos , Ouro
18.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37420827

RESUMO

In recent decades, the Surface Plasmon Resonance (SPR) phenomenon has been utilized as an underlying technique in a broad range of application fields. Herein, a new measuring strategy which harnesses the SPR technique in a way that is different from the classical methodology was explored by taking advantage of the characteristics of multimode waveguides, such as plastic optical fibers (POFs) or hetero-core fibers. The sensor systems based on this innovative sensing approach were designed, fabricated, and investigated to assess their ability to measure various physical features, such as magnetic field, temperature, force, and volume, and to realize chemical sensors. In more detail, a sensitive patch of fiber was used in series with a multimodal waveguide where the SPR took place, to alter the mode profile of the light at the input of the waveguide itself. In fact, when the changes of the physical feature of interest acted on the sensitive patch, a variation of the incident angles of the light launched in the multimodal waveguide occurred, and, as a consequence, a shift in resonance wavelength took place. The proposed approach permitted the separation of the measurand interaction zone and the SPR zone. This meant that the SPR zone could be realized only with a buffer layer and a metallic film, thus optimizing the total thickness of the layers for the best sensitivity, regardless of the measurand type. The proposed review aims to summarize the capabilities of this innovative sensing approach to realize several types of sensors for different application fields, showing the high performances obtained by exploiting a simple production process and an easy experimental setup.


Assuntos
Fibras Ópticas , Ressonância de Plasmônio de Superfície , Desenho de Equipamento , Ressonância de Plasmônio de Superfície/métodos , Plásticos
19.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571487

RESUMO

Surface plasmon resonance (SPR) is a popular real-time technique for the measurement of binding affinity and kinetics, and bench-top instruments combine affordability and ease of use with other benefits of the technique. Biomolecular ligands labeled with the 6xHis tag can be immobilized onto sensing surfaces presenting the Ni2+-nitrilotriacetic acid (NTA) functional group. While Ni-NTA immobilization offers many advantages, including the ability to regenerate and reuse the sensors, its use can lead to signal variability between experimental replicates. We report here a study of factors contributing to this variability using the Nicoya OpenSPR as a model system and suggest ways to control for those factors, increasing the reproducibility and rigor of the data. Our model ligand/analyte pairs were two ovarian cancer biomarker proteins (MUC16 and HE4) and their corresponding monoclonal antibodies. We observed a broad range of non-specific binding across multiple NTA chips. Experiments run on the same chips had more consistent results in ligand immobilization and analyte binding than experiments run on different chips. Further assessment showed that different chips demonstrated different maximum immobilizations for the same concentration of injected protein. We also show a variety of relationships between ligand immobilization level and analyte response, which we attribute to steric crowding at high ligand concentrations. Using this calibration to inform experimental design, researchers can choose protein concentrations for immobilization corresponding to the linear range of analyte response. We are the first to demonstrate calibration and normalization as a strategy to increase reproducibility and data quality of these chips. Our study assesses a variety of factors affecting chip variability, addressing a gap in knowledge about commercially available sensor chips. Controlling for these factors in the process of experimental design will minimize variability in analyte signal when using these important sensing platforms.


Assuntos
Projetos de Pesquisa , Ressonância de Plasmônio de Superfície , Ligantes , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos , Ácido Nitrilotriacético/química , Anticorpos Monoclonais
20.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139744

RESUMO

Fluidic and non-fluidic surface plasmon resonance measurements were realized for the same type of sensory layer and using the same mouse IgG antibody and anti-mouse IgG antibody biomolecular system. A comparison of the thicknesses of the anti-mouse IgG antibody layers bound to the ligand at increasing analyte concentrations ranging from 0.0 µg mL-1 to 5.0 µg mL-1 in the non-fluidic and the fluidic variant showed that the thickness of the bound anti-mouse antibody layers in the fluidic variant was approximately 1.5-3 times larger than in the non-fluidic variant. The greater thicknesses of the deposited layers were also reflected in the larger increment of the resonant angle in the fluidic variant compared to the non-fluidic variant in the considered range of analyte concentrations. The choice between fluidic and non-fluidic surface plasmon resonance biosensors may be justified by the availability of analyte volume and the intended modulation technique. When working with limited analyte, non-fluidic biosensors with intensity modulation are more advantageous. For larger analyte quantities, fluidic biosensors with angular modulation are recommended, primarily due to their slightly higher sensitivity in this measurement mode.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Animais , Camundongos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Imunoglobulina G , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA