Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 47(2): 284-297.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813659

RESUMO

Ten-Eleven-Translocation-2 (Tet2) is a DNA methylcytosine dioxygenase that functions as a tumor suppressor in hematopoietic malignancies. We examined the role of Tet2 in tumor-tissue myeloid cells and found that Tet2 sustains the immunosuppressive function of these cells. We found that Tet2 expression is increased in intratumoral myeloid cells both in mouse models of melanoma and in melanoma patients and that this increased expression is dependent on an IL-1R-MyD88 pathway. Ablation of Tet2 in myeloid cells suppressed melanoma growth in vivo and shifted the immunosuppressive gene expression program in tumor-associated macrophages to a proinflammatory one, with a concomitant reduction of the immunosuppressive function. This resulted in increased numbers of effector T cells in the tumor, and T cell depletion abolished the reduced tumor growth observed upon myeloid-specific deletion of Tet2. Our findings reveal a non-cell-intrinsic, tumor-promoting function for Tet2 and suggest that Tet2 may present a therapeutic target for the treatment of non-hematologic malignancies.


Assuntos
Carcinogênese , Proteínas de Ligação a DNA/metabolismo , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Animais , Dioxigenases , Feminino , Humanos , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Tumoral , Evasão Tumoral
2.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344434

RESUMO

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Assuntos
Hiperglicemia , Metformina , Animais , Modelos Animais de Doenças , Glucose/metabolismo , Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/metabolismo , Metformina/uso terapêutico , Camundongos
3.
Diabetologia ; 67(4): 724-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216792

RESUMO

AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.


Assuntos
Diabetes Mellitus Tipo 2 , Dioxigenases , Resistência à Insulina , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenases/metabolismo , Glucose/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468288

RESUMO

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
5.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724827

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Assuntos
Dioxigenases , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Animais , Feminino , Humanos , Ratos , Regeneração Óssea/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Células HEK293 , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ratos Sprague-Dawley , Crânio/patologia , Crânio/metabolismo
6.
Mol Biol Rep ; 51(1): 877, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083093

RESUMO

BACKGROUND: Ten-eleven translocases (TETs) are enzymes responsible for demethylation processes, playing a crucial role in maintaining the body's methylation balance. Dysregulation of TET expression can lead to abnormal methylation levels. Isocitrate dehydrogenases (IDH) are upstream genes involved in Kreb cycle responsible for production of α-ketoglutarate (α-KG). α-KG and vitamin C are cofactors of TET3 enzyme. There is limited data on the relationship between TET3 and its cofactor Vitamin C in head and neck carcinoma (H&NC). METHODS AND RESULTS: In this study, we have investigated the expression of the TET3 gene along with IDH1/2 genes involved in the Krebs cycle in the peripheral blood of 32 H&NC patients compared to 32 healthy controls. We estimated serum levels of TET3 protein and vitamin C and 5-hydroxymethylcytosine (5-hmC) percentage in DNA isolated from EDTA blood samples. Our findings revealed that TET3 and IDH1/2 were downregulated in H&NC patients compared to healthy controls. Serum levels of TET3 and Vitamin C were low in H&NC patients compared to healthy controls. Diminished levels of percentage 5-hmC were detected in EDTA blood samples of H&NC patients compared to controls. Spearman correlation analysis revealed a significant positive correlation between TET3 levels, vitamin C levels and 5-hmC percentage. CONCLUSION: The low levels of Vitamin C are believed to contribute to decreased activity of the TET3 gene and less conversion of 5-methylcytosine (5-mC) to 5-hmC. Dietary supplementation of Vitamin C may increase TET3 activity.


Assuntos
5-Metilcitosina , Ácido Ascórbico , Metilação de DNA , Dioxigenases , Epigênese Genética , Neoplasias de Cabeça e Pescoço , Isocitrato Desidrogenase , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Masculino , Epigênese Genética/genética , Feminino , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Pessoa de Meia-Idade , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/sangue , Metilação de DNA/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/sangue , Adulto , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação para Baixo/genética , Idoso , Estudos de Casos e Controles
7.
Lab Invest ; 103(12): 100264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839636

RESUMO

Hydroxymethylation of DNA, mediated by the ten-eleven translocation (TET) family of methylcytosine dioxygenases, represents a crucial epigenetic modification that manipulates gene expression in numerous biological processes. This study focuses on the effect of TET3 on the polarization of Kupffer cells (KCs) and its connection to the development of hepatocellular carcinoma (HCC). TET3 was found to be abundant in KCs, and its knockdown induced an M2-M1 phenotype shift, resulting in the suppression of viability, migration, and invasion of cocultured HCC cells. Additionally, the TET3 knockdown inhibited the tumorigenesis of HCC cells in nude mice. Downstream targets of TET3 were predicted using bioinformatics. TET3-mediated DNA hydroxymethylation of zinc finger MIZ-type containing 1 (ZMIZ1) promoter. The ZMIZ1 protein interacted with notch receptor 1 (Notch1) protein to activate the transcription of c-Myc. Silencing of ZMIZ1 in KCs similarly suppressed M2 polarization of KCs and malignant phenotype of cocultured HCC cells. However, these changes were counteracted by the overexpression of either Notch1 or c-Myc overexpression in KCs. In summary, this study demonstrates that TET3-mediated hydroxymethylation of ZMIZ1 enhances hepatocellular carcinogenesis by promoting M2 skewing of KCs through the Notch1/c-Myc axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Transdução de Sinais , Células de Kupffer , Proteínas Proto-Oncogênicas c-myc , Regulação para Cima , Camundongos Nus , Neoplasias Hepáticas/genética , Carcinogênese/genética , DNA
8.
Cancer Cell Int ; 23(1): 206, 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718440

RESUMO

BACKGROUND: Lymphangiogenesis has been reported to play crucial roles in the metastasis of thyroid cancer (THCA), but despite the significant research on lymphangiogenesis in THCA, the precise regulatory mechanism remains unclear. METHODS: Public databases including the Cancer Genome Atlas (TCGA), TIMER, and UALCAN were used to analyze and visualize the expression of TET3 and AHR in THCA, and the correlation between these molecules were used by TIMER. Additionally, RT-PCR and Western Blot were performed to determine the mRNA and protein expression of related proteins. Plate colony formation, wound healing, cell cycle, apoptosis, angiogenesis and transwell assay were used to examine the ability of proliferation, movement, lymphangiogenesis, migration and invasion of THCA cells. RESULTS: Analysis of the TCGA database revealed higher expression levels of TET3 and AHR in tumor tissue compared to normal tissue in THCA. Additionally, a strong correlation was observed between TET3 and AHR. UALCAN database demonstrated that high expression of TET3 and AHR was associated with advanced THCA TNM stages in THCA patients. Furthermore, TET3 activation accelerated THCA cell proliferation by inducing G2/M phase arrest and suppressing apoptosis, while AHR inactivation reduced THCA cell proliferation by decreasing G2/M phase arrest and promoting apoptosis in vitro. Notably, both TET3 and AHR significantly enhanced THCA cell lymphangiogenesis, migration and invasion. Moreover, TET3 activation and AHR inactivation regulated HIF-1α/VEGF signaling pathway, which ultimately, blocked the HIF-1α/VEGF in THCA cells and impaired their movement, migration and invasion abilities. CONCLUSIONS: The combined action of TET3 and AHR to promote lymphangiogenesis in THCA through the HIF-1α/VEGF signaling pathway, and targeting them might provide a potential treatment strategy for THCA.

9.
Mol Biol Rep ; 51(1): 32, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155307

RESUMO

BACKGROUND: Current studies have suggested that miRNA is beneficial in inhibiting myocardial remodeling after myocardial infarction (AMI), however, its underlying mechanism is unclear. OBJECTIVES: We aimed to investigate whether miR-150 can inhibit myocardial remodeling after myocardial infarction and whether this process is regulated by the miR-150/TET3 pathway. METHODS: On the first day, C57BL/6 AMI mice(n = 15) were administrated with miR-150, and another 15 AMI mice were administrated with the same volume of control Agomir. Left ventricular ejection fraction (LVEF%) and myocardial remodeling were compared after one week; TET3 (ten-eleven translocation 3) and VEGF-α (vascular endothelial growth factor-α) were also determined in the infracted heart simultaneously. The neovascularization in the infarcted area at day 21 was compared through CD31 using fluorescence microscopy; Activated monocytes stimulated with LPS were transfected with miR-150. Laser scanning confocal microscopy was used to detect the intracytoplasmic imaging of miR-150 in Ly6Chigh monocytes. Expression of the miR-150 in the monocytes was measured using Q-PCR. After 48 h, the proportion of Ly6Chigh/low monocytes was determined using flow cytometry. Expression of TET3 in Ly6Chigh/low monocytes was measured using Q-PCR and Western blot. After the downregulation of TET3 specifically, the levels of Ly6Chigh/low monocytes were further determined. RESULTS: We first observed an increased trend of mice survival rate in the miR-150 injection group, but it didn't reach a statistical difference (66.7% vs. 40.0%, p = 0.272). However, AMI mice administrated with miR-150 displayed better LVEF% (51.78%±2.90% vs. 40.28%±4.20%, p<0.001) and decreased infarct size% (25.47 ± 7.75 vs. 50.39 ± 16.91, p = 0.002). After miR-150 was transfected into monocytes, the percentage of Ly6Clow monocytes increased significantly after 48 h (48.5%±10.1% vs. 42.5%±8.3%, p < 0.001). Finally, Western blot analysis (0.56 ± 0.10/ß-actin vs. 0.99 ± 0.12/ß-actin, p < 0.001) and real-time PCR (1.09 ± 0.09/GAPDH vs. 2.53 ± 0.15/GAPDH, p < 0.001, p < 0.001) both confirmed decreased expression of TET3 in monocytes after transfection with miR-150. After the downregulation of TET3 specifically, Ly6Clow monocytes showed a significant increase (16.73%±6.45% vs. 6.94%±2.99%, p<0.001, p < 0.001). CONCLUSIONS: miR-150 alleviated myocardial remodeling after AMI. Possible mechanisms are ascribed to the regulating of TET3 and VEGF-α in inflammatory monocytes.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Actinas , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/genética
10.
Mol Ther ; 30(4): 1692-1705, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35124178

RESUMO

Preeclampsia (PE) is associated with maternal and fetal perinatal morbidity and mortality, which brings tremendous suffering and imposes an economic burden worldwide. The failure of uterine spiral artery remodeling may be related to the abnormal function of trophoblasts and lead to the occurrence and progression of PE. Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the failure of uterine spiral artery remodeling. However, the regulation of lncRNA expression in PE is poorly characterized. Here, we reported that hypoxia-induced microRNA (miR)-218 inhibited the expression of lncRNA TUG1 by targeting FOXP1. Further RNA sequencing and mechanism analysis revealed that silencing of TUG1 increased the expression of DNA demethylase TET3 and proliferation-related DUSP family, including DUSP2, DUSP4, and DUSP5, via binding to SUV39H1 in the nucleus. Moreover, TUG1 modulated the DUSP family in vitro through a TET3-mediated epigenetic mechanism. Taken together, our results unmask a new regulatory network mediated by TUG1 as an essential determinant of the pathogenesis of PE, which regulates cell growth and possibly the occurrence and development of other diseases.


Assuntos
MicroRNAs , Pré-Eclâmpsia , RNA Longo não Codificante , Artérias/metabolismo , Artérias/patologia , Proliferação de Células/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras
11.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203443

RESUMO

Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína BRCA1 , Proteína BRCA2 , Carcinogênese/genética , DNA
12.
Biochem Biophys Res Commun ; 631: 138-145, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36183555

RESUMO

High serum ferritin (hyperferritinemia), a reliable hallmark of severe COVID-19 often associates with a moderate decrease in serum iron (hypoferremia) and a moderate increase in serum hepcidin. This suggests that hyperferritinemia in severe COVID-19 is reflective of inflammation rather than iron overload. To test this possibility, the expression status of ferritin heavy chain (FTH1), transferrin receptor 1 (TFRC), hepcidin (HAMP), and ferroportin (SLC40A1) genes and promoter methylation status of FTH1 and TFRC genes were examined in blood samples obtained from COVID-19 patients showing no, mild or severe symptoms and in healthy-donor monocytes stimulated with SARS-CoV-2-derived peptides. Severe COVID-19 samples showed a significant increase in FTH1 expression and hypomethylation relative to mild or asymptomatic COVID-19 samples. S-peptide treated monocytes also showed a significant increase in FTH1 expression and hypomethylation relative to that in controls; treatment with ECD or NP did not change FTH1 expression nor its methylation status. In silico and in vitro analysis showed a significant increase in the expression of the TET3 demethylase in S peptide-treated monocytes. Findings presented here suggest that S peptide-driven hypomethylation of the FTH1 gene promoter underlies hyperferritinemia in severe COVID-19 disease.


Assuntos
COVID-19 , Hiperferritinemia , Apoferritinas/genética , COVID-19/genética , Metilação de DNA , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo , Oxirredutases/metabolismo , Receptores da Transferrina , SARS-CoV-2
13.
Cell Mol Life Sci ; 78(2): 757-768, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32405722

RESUMO

The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.


Assuntos
Dioxigenases/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Neurogênese , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Dioxigenases/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Regulação para Cima
14.
J Biol Chem ; 295(48): 16299-16313, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32963106

RESUMO

Hypoxia-inducible factors are heterodimeric transcription factors that play a crucial role in a cell's ability to adapt to low oxygen. The von Hippel-Lindau tumor suppressor (pVHL) acts as a master regulator of HIF activity, and its targeting of prolyl hydroxylated HIF-α for proteasomal degradation under normoxia is thought to be a major mechanism for pVHL tumor suppression and cellular response to oxygen. Whether pVHL regulates other targets through a similar mechanism is largely unknown. Here, we identify TET2/3 as novel targets of pVHL. pVHL induces proteasomal degradation of TET2/3, resulting in reduced global 5-hydroxymethylcytosine levels. Conserved proline residues within the LAP/LAP-like motifs of these two proteins are hydroxylated by the prolyl hydroxylase enzymes (PHD2/EGLN1 and PHD3/EGLN3), which is prerequisite for pVHL-mediated degradation. Using zebrafish as a model, we determined that global 5-hydroxymethylcytosine levels are enhanced in vhl-null, egln1a/b-double-null, and egln3-null embryos. Therefore, we reveal a novel function for the PHD-pVHL pathway in regulating TET protein stability and activity. These data extend our understanding of how TET proteins are regulated and provide new insight into the mechanisms of pVHL in tumor suppression.


Assuntos
Metilação de DNA , DNA/metabolismo , Dioxigenases/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , DNA/genética , Dioxigenases/genética , Células HEK293 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Addict Biol ; 26(1): e12875, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031744

RESUMO

The development of opioid addiction involves DNA methylation. Accordingly, the DNA demethylation, induced by ten-eleven translocation (Tet) enzymes, may represent a novel approach to prevent opioid addiction. The present study examined the role of TET1 and TET3 in the development of morphine-seeking behavior in rats. We showed that 1 day of morphine self-administration (SA) training upregulated TET3 but not TET1 expression in the hippocampal CA1. With 7 days of morphine SA training, the expression of TET3 in the CA1 returned to the baseline level, while the TET1 expression was downregulated. No change of TET1 and TET3 in the nucleus accumbens shell was observed in morphine SA trained rats, or in the yoked morphine rats, or in rats trained for saccharin SA. Furthermore, we found that knocking down TET3 expression in the CA1 accelerated the acquisition of morphine SA, while overexpression of the catalytic domain of TET1 in the CA1 attenuated the acquisition. Together, these findings suggest that TET1 and TET3 in the CA1 are important epigenetic modulators involved in the morphine-seeking behavior and provide a new strategy in the treatment of opioid addiction.


Assuntos
Dioxigenases/metabolismo , Hipocampo/metabolismo , Morfina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Masculino , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Ratos , Autoadministração
16.
J Integr Neurosci ; 20(3): 529-539, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34645086

RESUMO

Rab3a, a subtype protein in the Rab3 family amongst the small G proteins, is closely associated with the learning and memory formation process. Various neuronal stimuli can induce the expression of Rab3a; however, how DNA modification is involved in regulating its expression is not fully understood. Ten-eleven translocation (TET) proteins can oxidate methylcytosine to hydroxymethylcytosine, which can further activate gene expression. Previous studies reported that TET-mediated regulation of 5hmC induced by learning is involved in neuronal activation. However, whether Tet protein regulates Rab3a is unknown. To understand the role of TET-mediated 5hmC on Rab3a in neuronal activation, we adopted a KCl-induced depolarization protocol in cultured primary cortical neurons to mimic neuronal activity in vitro. After KCl treatment, Rab3a and Tet3 mRNA expression were induced. Moreover, we observed a decrease in the methylation level and an increase of hydroxymethylation level surrounding the CpG island near the transcription start site of Rab3a. Furthermore, recently, Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes. Using FAIRE-qPCR, we observed a euchromatin state and the increased occupancy of Tet3, H3K4me3, and H3K27ac at the promoter region of Rab3a after KCl treatment. Finally, by using shRNA to knockdown Tet3 prior KCl treatment, all changes mentioned above vanished. Thus, our findings elucidated that the neuronal activity-induced accumulation of hydroxymethylation, which Tet3 mediates, can introduce an active and permissive chromatin structure at Rab3a promoter and lead to the induction of Rab3a mRNA expression.


Assuntos
Metilação de DNA/fisiologia , Dioxigenases/metabolismo , Neurônios/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Camundongos , Mitose/fisiologia
17.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31211412

RESUMO

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Dioxigenases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Biópsia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Glioblastoma/mortalidade , Glioblastoma/patologia , Código das Histonas/genética , Humanos , Camundongos , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Proc Natl Acad Sci U S A ; 114(31): 8229-8234, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716910

RESUMO

Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily that act as ligand-dependent transcription factors. Here we identified the ten-eleven translocation protein 3 (TET3) as a TR interacting protein increasing cell sensitivity to T3. The interaction between TET3 and TRs is independent of TET3 catalytic activity and specifically allows the stabilization of TRs on chromatin. We provide evidence that TET3 is required for TR stability, efficient binding of target genes, and transcriptional activation. Interestingly, the differential ability of different TRα1 mutants to interact with TET3 might explain their differential dominant activity in patients carrying TR germline mutations. So this study evidences a mode of action for TET3 as a nonclassical coregulator of TRs, modulating its stability and access to chromatin, rather than its intrinsic transcriptional activity. This regulatory function might be more general toward nuclear receptors. Indeed, TET3 interacts with different members of the superfamily and also enhances their association to chromatin.


Assuntos
Cromatina/metabolismo , Dioxigenases/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Domínio Catalítico , Cromatina/genética , Dioxigenases/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Mutação , Nitrilas/farmacologia , Domínios e Motivos de Interação entre Proteínas , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Tiazóis/farmacologia , Receptores alfa dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Transcrição Gênica , Ubiquitinação
19.
Mol Reprod Dev ; 86(3): 298-307, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30624819

RESUMO

DNA methylation is a central epigenetic event that regulates cellular differentiation, reprogramming, and pathogenesis. DNA demethylation occurs in preimplantation embryos and primordial germ cells. Recent studies suggest that TET3-mediated oxidation of 5-methylcytosine (5-mC) contributes to genome-wide loss of DNA methylation, yet the mechanism of this process in bovine preimplanted embryos has remained unknown. In this study, we analyzed the expression of Tet gene family at different stages of embryo development. The results revealed that Tet3 was highly expressed in bovine oocytes and in vitro fertilization preimplantation embryos. Knockdown of Tet3 by injection of siRNA in germinal vesicle oocytes was used to assess its role in epigenetic remodeling and embryo development. The results showed that knockdown of Tet3 significantly inhibited oocyte development, maturation, fertilization, and decreased subsequently cleavage and blastocyst rates. Tet3 knockdown significantly increased 5-mC levels, whereas the 5-hmC levels slightly declined. The quantitative polymerase chain reaction data showed that expression levels of the pluripotency genes (POU5F1 and NANOG) were significantly decreased, but the imprinted gene H19 did not change in the Tet3 knockdown group. In addition, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) promoter regions showed hypermethylation in the Tet3 knockdown group, except the imprinted gene H19. Furthermore, the percentage of apoptotic cells and the expression levels of the proapoptotic gene BAX were significantly increased, whereas the antiapoptotic gene BCL-2 messenger RNA levels were decreased in the Tet3 knockdown group. Our results indicated that Tet3 could influence the expression level of the pluripotency genes through regulating the methylation status of the promoter region, thus affect embryonic development.


Assuntos
Metilação de DNA/genética , Dioxigenases/genética , Desenvolvimento Embrionário/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , 5-Metilcitosina/metabolismo , Animais , Bovinos , Diferenciação Celular/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética
20.
Brain Behav Immun ; 79: 159-173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763768

RESUMO

Neuroinflammation, considered as a pathological hallmark of Alzheimer's disease (AD), has been demonstrated to affect hippocampal neurogenesis and cognitive function. Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. However, the mechanisms are still largely unknown. Here, we reported that IL-6 suppressed neurogenesis via a JAK2/STAT3 signaling in neural stem cells (NSCs). Importantly, we found that NeuroD1 (Neurogenic differentiation 1) gene expression, which drives NSCs neurodifferentiation, was regulated by TET3 and DNMT1 in a JAK2/STAT3-dependent manner. We further found that JAK2/STAT3 inhibition enhanced demethylation of NeuroD1 regulatory elements in IL-6-treated cells, which is related to the significant upregulation of TET3 expression as well as the decreased expression of DNMT1. Furthermore, Inhibiting JAK2/STAT3 significantly rescued the memory deficits and hippocampal neurogenesis dysfunction in APP/PS1 mice. Our data suggest that JAK2/STAT3 signaling plays a vital role in suppressing neurogenesis of NSCs exposed to IL-6 at the epigenetic level, by regulating DNA methylation/demethylation.


Assuntos
Janus Quinase 2/metabolismo , Neurogênese/fisiologia , Fator de Transcrição STAT3/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Desmetilação do DNA , Metilação de DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurogênese/imunologia , Neuroimunomodulação , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA