Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 704: 149674, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387328

RESUMO

BACKGROUND: Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are a major cause of male infertility by disrupting spermatogenesis. OBJECTIVE: Here, we examined the potential protective benefits of kaempferol (KMF), a flavonol known for its antioxidant properties, on BPA-induced reproductive toxicity in adult male rats. METHODS: Human skin fibroblast cells (HNFF-P18) underwent cell viability assays. Thirty-five male Wistar rats were assigned to four groups: 1) control, 2) BPA (10 mg/kg), 3,4) BPA, and different dosages of KMF (1 and 10 mg/kg). The study examined the rats' testosterone serum level, antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), oxidative markers malondialdehyde (MDA) and total antioxidant capacity (TAC), body weight, weight ratios of testis and prostate, and histopathological examinations. RESULTS: The study revealed that using KMF to treat rats exposed to BPA increased cell viability. Moreover, the rats' testosterone levels, which BPA reduced, showed a significant increase after KMF was included in the treatment regimen. Treatment with BPA led to oxidative stress and tissue damage, but simultaneous treatment with KMF restored the damaged tissue to its normal state. Histopathology studies on testis and prostate tissues showed that KMF had an ameliorative impact on BPA-induced tissue damage. CONCLUSIONS: The research suggests that KMF, a flavonol, could protect male rats from the harmful effects of BPA on reproductive health, highlighting its potential healing properties.


Assuntos
Antioxidantes , Quempferóis , Fenóis , Adulto , Ratos , Masculino , Humanos , Animais , Antioxidantes/farmacologia , Quempferóis/farmacologia , Ratos Wistar , Testículo/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Testosterona/metabolismo
2.
Mol Carcinog ; 63(4): 714-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251858

RESUMO

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/genética , NF-kappa B/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/metabolismo , Epigênese Genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/fisiologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo
3.
Neurochem Res ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060768

RESUMO

Glioblastoma stem cells (GSCs) have been implicated in the self-renewal and treatment resistance of glioblastoma (GBM). Our previous study found that 4,5-dimethoxycanthin-6-one has the potential to inhibit GBM cell proliferation. This current study aims to elucidate the molecular mechanism underlying the effects of 4,5-dimethoxycanthin-6-one in GBM development. The effect of 4,5-dimethoxycanthin-6-one on GSC formation and differentiation was explored in human GBM cell lines U251 and U87. Subsequently, 4,5-dimethoxycanthin-6-one binding to tetraspanin 1 (TSPAN1) / transmembrane 4 L six family member 1 (TM4SF1) was analyzed by molecular simulation docking. Co-immunoprecipitation (Co-IP) and immunofluorescence (IF) were used to assess the interactions between TSPAN1 and TM4SF1 in GSCs. Cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assay. To evaluate cell migration, invasion and apoptosis, we employed wound healing assay, transwell and flow cytometry, respectively. Furthermore, subcutaneous xenograft tumor models in nude mice were constructed to evaluate the impact of 4,5-dimethoxycanthin-6-one on GSCs in vivo by examining tumor growth and histological characteristics. 4,5-Dimethoxycanthin-6-one inhibited GSC formation and promoted stem cell differentiation in a concentration-dependent manner. Molecular docking models of 4,5-dimethoxycanthin-6-one with TM4SF1 and TSPAN1 were constructed. Then, the interaction between TSPAN1 and TM4SF1 in GSC was clarified. Moreover, 4,5-dimethoxycanthin-6-one significantly inhibited the expressions of TM4SF1 and TSPAN1 in vitro and in vivo. Overexpression of TSPAN1 partially reversed the inhibitory effects of 4,5-dimethoxycanthin-6-one on GSC formation, proliferation, migration and invasion. 4,5-Dimethoxycanthin-6-one inhibited GBM progression by inhibiting TSPAN1/TM4SF1 axis. 4,5-Dimethoxycanthin-6-one might be a novel and effective drug for the treatment of GBM.

4.
J Appl Toxicol ; 44(6): 818-832, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38272789

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) can cause apoptosis in TM4 cells; however, the underlying mechanism has not been entirely elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on ROS, Ca2+ level, p38/AKT/mTOR pathway, and apoptosis in TM4 cells and to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. After exposure to different concentrations (0, 50, 100, 150, and 200 µg/mL) of TiO2 NPs for 24 h, cell viability, ROS, Ca2+ level, Ca2+-ATPase activity, p38/AKT/mTOR pathway-related proteins, apoptosis rate, and apoptosis-related proteins (Bax, Bcl-2, Caspase 3, Caspase 9, and p53) were detected. The ROS scavenger NAC was used to determine the effect of ROS on Ca2+ level. The Ca2+ chelator BAPTA-AM was used to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. TiO2 NPs significantly inhibited cell viability, increased ROS level, and elevated Ca2+ level while suppressing Ca2+-ATPase activity. TiO2 NPs regulated the p38/AKT/mTOR pathway via increasing p-p38 level and decreasing p-AKT and p-mTOR levels. TiO2 NPs significantly enhanced the apoptosis. NAC attenuated Ca2+ overload and reduction in Ca2+-ATPase activity caused by TiO2 NPs. BAPTA-AM alleviated TiO2 NPs-induced abnormal expression of p38/AKT/mTOR pathway-related proteins. BAPTA-AM assuaged the apoptosis caused by TiO2 NPs. Altogether, this study revealed that TiO2 NPs elevated intracellular Ca2+ level through ROS accumulation. Subsequently, the heightened intracellular Ca2+ level was observed to exert regulation over the p38/AKT/mTOR pathway, ultimately culminating in apoptosis. These results provides a complementary understanding to the mechanism of TiO2 NPs-induced apoptosis in TM4 cells.


Assuntos
Apoptose , Nanopartículas Metálicas , Transdução de Sinais , Titânio , Animais , Camundongos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Titânio/toxicidade , Serina-Treonina Quinases TOR/metabolismo
5.
Ecotoxicol Environ Saf ; 270: 115930, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184979

RESUMO

Cadmium (Cd) is a harmful metal that seriously affects the male reproductive system, but the mechanism of how Cd exposure damages Sertoli cells is not fully understood. This study used TM4 cells to explore the mechanism of Cd damage to Sertoli cells. We found that Cd was concentration- and time-dependent on TM4 cell viability. Cd exposure increased intracellular reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH), and Interleukin-1ß (IL-1ß) release in TM4 cells, decreased mitochondrial function, and increased pyroptosis. N-acetylcysteine (NAC), MCC950 and BAY 11-7082 (BAY) alleviate the release of IL-1ß and LDH induced by Cd. NAC reduced Cd induced increases in ROS, NLRP3, Caspase-1, Heme oxygenase-1(HO-1), superoxide dismutase (SOD2), and increased mitochondrial function. The activation of GSDMD is the main causes of pyroptosis, and NAC significantly inhibit its activation and formation. Our results suggest that Cd exposure induces a toxic mechanism of GSDMD-mediated pyroptosis in TM4 cells by increasing ROS levels and activating the inflammasome.


Assuntos
Cádmio , Inflamassomos , Masculino , Humanos , Inflamassomos/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio , Piroptose , Transdução de Sinais , Estresse Oxidativo , Acetilcisteína/farmacologia
6.
Ecotoxicol Environ Saf ; 281: 116619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925031

RESUMO

This study investigated the effects of compound probiotics (CP) on AFB1-induced cytotoxicity in Sertoli TM4 cells. The L9 (3 × 3) orthogonal test was conducted to determine the optimal CP required for high AFB1 degradation in the artificial gastrointestinal fluid in vitro. The maximal AFB1 degradation rate was 40.55 % (P < 0.05) when the final viable count was 1.0 × 105 CFU/mL for Bacillus subtilis, Lactobacillus casein, and Saccharomyces cerevisiae. The effects of CP and the CP supernatant (CPS) on TM4 cell viability were evaluated to achieve the optimal protective conditions. When CPS4 (corresponding to CP viable counts of 1.0 × 104 CFU/mL) was added to the TM4 cells for 24 h, the cell viability reached 108.86 % (P < 0.05). AFB1 reduced TM4 cell viability in a concentration- and time-dependent manner at an AFB1 concentration ranging from 0 to 1.5 µM after 48-h AFB1 exposure. The optimal AFB1 concentration/times for low- and high damage models were 0.5 and 1.25 µM both for 24 h, which decreased viability to 76.04 % and 65.35 %, respectively. however, CPS4 added to low- and high-damage models increased the cell viability to 97.43 % and 75.12 %, respectively (P < 0.05). Transcriptome sequencing was performed based on the following designed groups: the control, 0.5 µM AFB1, 1.25 µM AFB1, CPS4, and CPS4+0.5 µM AFB1. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis was further performed to identify significantly enriched signaling pathways, which were subsequently verified. It was shown that AFB1 induced apoptosis by blocking the PI3K-AKT-mTOR pathway and upregulating autophagy proteins such as LC3B, Beclin1, and ATG5 while inhibiting autophagic flux. CPS4 promoted AFB1 degradation, activated the p62-NRF2 antioxidant, and inhibited ROS/TRPML1 pathways, thereby reducing ROS production and inflammation and ultimately alleviating AFB1-induced autophagy and apoptosis. These findings supports the potential of probiotics to protect the male reproductive system from toxin damage.


Assuntos
Aflatoxina B1 , Antioxidantes , Autofagia , Sobrevivência Celular , Fator 2 Relacionado a NF-E2 , Probióticos , Células de Sertoli , Probióticos/farmacologia , Animais , Aflatoxina B1/toxicidade , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Masculino , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos
7.
Drug Chem Toxicol ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647040

RESUMO

The human immunodeficiency virus continues to pose a significant global public health challenge, affecting millions of individuals. The current treatment strategy has incorporated the utilization of combinations of antiretroviral drugs. The administration of these drugs is associated with many deleterious consequences on several physiological systems, notably the reproductive system. This study aimed to assess the toxic effects of abacavir sulfate, ritonavir, nevirapine, and zidovudine, as well as their combinations, on TM3 Leydig and TM4 Sertoli cells. The cell viability was gauged using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays. Reactive oxygen species (ROS) production was assessed via the 2',7'-dichlorofluorescein diacetate (DCFDA) test, and DNA damage was determined using the comet assay. Results indicated cytotoxic effects at low drug concentrations, both individually and combined. The administration of drugs, individually and in combination, resulted in the production of ROS and caused damage to the DNA at the tested concentrations. In conclusion, the results of this study suggest that the administration of antiretroviral drugs can lead to testicular toxicity by promoting the generation of ROS and DNA damage. Furthermore, it should be noted that the toxicity of antiretroviral drug combinations was shown to be higher compared to that of individual drugs.

8.
Part Fibre Toxicol ; 20(1): 35, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641072

RESUMO

BACKGROUND: Plastic pollution is greatly serious in the ocean and soil. Microplastics (MPs) degraded from plastic has threatened animals and humans health. The accumulation of MPs in the tissues and blood in animals and humans has been found. There is therefore a need to assess the toxicological effects of MPs on the reproductive system. RESULTS: In this study, we explored the effect of polystyrene microplastics (PS-MPs) on premature testicular aging in vitro and in vivo. In vitro, we found that testicular sertoli cells (TM4 cells) was prematurely senescent following PS-MPs treatment by the evaluation of a range of aging marker molecules (such as Sa-ß-gal, p16 and 21). TM4 cells were then employed for in vitro model to study the potential molecular mechanism by which PS-MPs induce the premature senescence of TM4 cells. NF-κB is identified as a key molecule for PS-MPs-induced TM4 cellular senescence. Furthermore, through eliminating reactive oxygen species (ROS), the activation of nuclear factor kappa B (NF-κB) was blocked in PS-MPs-induced senescent TM4 cells, indicating that ROS triggers NF-κB activation. Next, we analyzed the causes of mitochondrial ROS (mtROS) accumulation induced by PS-MPs, and results showed that Ca2+ overload induced the accumulation of mtROS. Further, PS-MPs exposure inhibits mitophagy, leading to the continuous accumulation of senescent cells. In vivo, 8-week-old C57 mice were used as models to assess the effect of PS-MPs on premature testicular aging. The results illustrated that PS-MPs exposure causes premature aging of testicular tissue by testing aging markers. Additionally, PS-MPs led to oxidative stress and inflammatory response in the testicular tissue. CONCLUSION: In short, our experimental results revealed that PS-MPs-caused testicular premature aging is dependent on Ca2+/ROS/NF-κB signaling axis. The current study lays the foundation for further exploration of the effects of microplastics on testicular toxicology.


Assuntos
Senilidade Prematura , Humanos , Masculino , Animais , Camundongos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos , NF-kappa B , Espécies Reativas de Oxigênio
9.
Toxicol Mech Methods ; 33(8): 636-645, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37202861

RESUMO

OBJECTIVE: This study aims to explore the mechanism of PM2.5 damage to the reproductive system of male mice. METHODS: Mouse testis Sertoli TM4 cells were divided into four groups: a control group (no additional ingredients except for medium), PM2.5 group (medium containing 100 µg/mL PM2.5), PM2.5 + NAM group (medium containing 100 µg/mL PM2.5 and 5 mM NAM), and NAM group (medium containing 5 mM nicotinamide) and cultured in vitro for 24 or 48 h. The apoptosis rate of TM4 cells was measured using flow cytometry, the intracellular levels of NAD+ and NADH were detected using an NAD+/NADH assay kit, and the protein expression levels of SIRT1 and PARP1 were determined by western blotting. RESULTS: Mouse testis Sertoli TM4 cells exposed to PM2.5 demonstrated an increase in the apoptosis rate and PARP1 protein expression, albeit a decrease in NAD+, NADH, and SIRT1 protein levels (p = 0.05). These changes were reversed in the group treated with a combination of PM2.5 and nicotinamide (p = 0.05). CONCLUSION: PM2.5 can cause Sertoli TM4 cell damage in mouse testes by decreasing intracellular NAD+ levels.


Assuntos
Células de Sertoli , Testículo , Camundongos , Masculino , Animais , Testículo/metabolismo , Células de Sertoli/metabolismo , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Material Particulado/toxicidade
10.
Wei Sheng Yan Jiu ; 52(6): 979-992, 2023 Nov.
Artigo em Zh | MEDLINE | ID: mdl-38115663

RESUMO

OBJECTIVE: To investigate the toxic effects and potential mechanisms of tri(1, 3-dichloro-2-propyl) phosphate(TDCIPP) exposure on the mouse testicular supporting cell line(TM4 cells). METHODS: TM4 cells were treated with different concentrations of TDCIPP(0, 12.5, 25 and 50 µmol/L), or 50 µmol/L TDCIPP combined with antioxidant N-acetylcysteine(NAC) for 24 h. Cell viability was assessed using the CCK8 assay, intracellular ROS levels were detected using the DCFH-DA probe, and the protein levels of oxeiptosis-related proteins, such as KEAP1, PGAM5, AIFM1 and phosphorylated AIFM1(p-AIFM1), were detected using Western blot. RESULTS: TDCIPP dose-dependently reduced TM4 cell viability(P<0.05). ROS levels in TM4 cells treated with 12.5, 25 and 50 µmol/L TDCIPP were 9.44±1.42, 17.25±1.81 and 18.38±2.66, respectively, significantly higher than the control group's 5.08±0.90(P<0.05). ROS levels in the 5 mmol/L NAC+50 µmol/L TDCIPP group were 14.70±0.50, significantly lower than the corresponding TDCIPP group's 26.44±0.73(P<0.05). The activity of TM4 cells in KEAP1siRNA+TDCIPP group and PGAM5siRNA+TDCIPP group were 77.00±1.73 and 76.67±1.53, respectively, significantly higher than TDCIPP group 68.67±1.53(P<0.05). The relative expression of KEAP1 protein in TM4 cells treated with 25 and 50 µmol/L TDCIPP were 0.77±0.04 and 0.82±0.02, respectively, significantly higher than the control group's 0.57±0.01(P<0.05). The relative expression of PGAM5 protein in TDCIPP-treated TM4 cells were 1.17±0.04, 1.38±0.03 and 1.41±0.03, respectively, significantly higher than the control group's 0.81±0.02(P<0.05). The relative expression of AIFM1 protein were 0.42±0.01, 0.63±0.01 and 0.68±0.02, respectively, significantly higher than the control group's 0.34±0.02(P<0.05). The relative expression of p-AIFM1 protein were 1.73±0.02, 1.52±0.02 and 0.73±0.01, respectively, significantly lower than the control group's 2.25±0.02(P<0.05). In the 5 mmol/L NAC+50 µmol/L TDCIPP group, the relative expression of KEAP1, PGAM5 and AIFM1 proteins in TM4 cells were 0.61±0.01, 0.58±0.01 and 0.48±0.03, respectively, significantly lower than the TDCIPP group's 0.86±0.12(P<0.05), 0.74±0.02(P<0.05) and 0.92±0.01(P<0.05). The relative expression of p-AIFM1 protein in the 5 mmol/L NAC+50 µmol/L TDCIPP group was 0.45±0.11, significantly higher than the TDCIPP group's 0.23±0.01(P<0.05). CONCLUSION: The reduction of TM4 cell viability induced by TDCIPP may be related to ROS-mediated regulation of the KEAP1/PGAM5/AIFM1 pathway, leading to oxeiptosis.


Assuntos
Fator 2 Relacionado a NF-E2 , Fosfoproteínas Fosfatases , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sobrevivência Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia
11.
Artigo em Zh | MEDLINE | ID: mdl-37400398

RESUMO

Objective: To study the effects of cadmium chloride (CdCl(2)) exposure on testicular autophagy levels and blood-testis barrier integrity in prepubertal male SD rats and testicular sertoli (TM4) cells. Methods: In July 2021, 9 4-week-old male SD rats were randomly divided into 3 groups: control group (normal saline), low dose group (1 mg/kg·bw CdCl(2)) and high dose group (2 mg/kg·bw CdCl(2)), and were exposed with CdCl(2) by intrabitoneal injection. 24 h later, HE staining was used to observe the morphological changes of testis of rats, biological tracer was used to observe the integrity of blood-testis barrier, and the expression levels of microtubule-associated protein light chain 3 (LC3) -Ⅰ and LC3-Ⅱ in testicular tissue were detected. TM4 cells were treated with 0, 2.5, 5.0 and 10.0 µmol/L CdCl(2) for 24 h to detect the toxic effect of cadmium. The cells were divided into blank group (no exposure), exposure group (10.0 µmol/L CdCl(2)), experimental group[10.0 µmol/L CdCl(2)+60.0 µmol/L 3-methyladenine (3-MA) ] and inhibitor group (60.0 µmol/L 3-MA). After 24 h of treatment, Western blot analysis was used to detect the expression levels of LC3-Ⅱ, ubiquitin binding protein p62, tight junction protein ZO-1 and adhesion junction protein N-cadherin. Results: The morphology and structure of testicular tissue in the high dose group were obvious changed, including uneven distribution of seminiferous tubules, irregular shape, thinning of seminiferous epithelium, loose structure, disordered arrangement of cells, abnormal deep staining of nuclei and vacuoles of Sertoli cells. The results of biological tracer method showed that the integrity of blood-testis barrier was damaged in the low and high dose group. Western blot results showed that compared with control group, the expression levels of LC3-Ⅱ in testicular tissue of rats in low and high dose groups were increased, the differences were statistically significant (P<0.05). Compared with the 0 µmol/L, after exposure to 5.0, 10.0 µmol/L CdCl(2), the expression levels of ZO-1 and N-cadherin in TM4 cells were significantly decreased, and the expression level of p62 and LC3-Ⅱ/LC3-Ⅰ were significantly increased, the differences were statistically significant (P<0.05). Compared with the exposure group, the relative expression level of p62 and LC3-Ⅱ/LC3-Ⅰ in TM4 cells of the experimental group were significantly decreased, while the relative expression levels of ZO-1 and N-cadherin were significantly increased, the differences were statistically significant (P<0.05) . Conclusion: The mechanism of the toxic effect of cadmium on the reproductive system of male SD rats may be related to the effect of the autophagy level of testicular tissue and the destruction of the blood-testis barrier integrity.


Assuntos
Cloreto de Cádmio , Testículo , Ratos , Masculino , Animais , Cloreto de Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Cádmio , Barreira Hematotesticular/metabolismo , Ratos Sprague-Dawley , Caderinas/metabolismo , Autofagia
12.
Mol Cell Probes ; 65: 101849, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987447

RESUMO

BACKGROUND: As reported, long non-coding RNAs are a pivotal player in lung squamous cell carcinoma (LSCC) progression. We noticed the remarkably upregulated transmembrane-4-l-six-family-19 antisense RNA 1 (TM4SF19-AS1) in LSCC and further demonstrated the function it played in LSCC and the possible molecular mechanism. METHODS: Via bioinformatics approach, we evaluated TM4SF19-AS1 and TM4SF19 levels in LSCC tissue, and real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot revealed their mRNA and protein levels in LSCC cells. Cell Counting Kit-8 and colony formation assays analyzed the proliferation ability of LSCC cells, and cell adhesion ability was detected via cell adhesion assay. RNA immunoprecipitation and chromatin immunoprecipitation analyzed the underlying mechanism of TM4SF19-AS1 regulating its target, while methylation-specific PCR indicated the methylation level of TM4SF19-AS1. RESULTS: TM4SF19-AS1 was markedly upregulated in LSCC. Functional assays revealed that TM4SF19-AS1 could facilitate the proliferation and adhesion of LSCC. Besides, we revealed the mechanism of TM4SF19-AS1 regulation that it directly bound to WD repeat-containing protein 5 (WDR5), and was then recruited to TM4SF19 promoter region, which activated DNA demethylation, thereby suppressing malignant LSCC progression. CONCLUSION: Our research demonstrated that TM4SF19-AS1 affected LSCC cell proliferation by recruiting WDR5 to manipulate transmembrane-4-lsix-family-member-19 (TM4SF19), which offers a new observation on LSCC pathogenesis, indicating that TM4SF19-AS1 is able to be a promising target for LSCC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tetraspaninas
13.
Cell Biol Toxicol ; 38(2): 223-236, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33945031

RESUMO

BACKGROUND: Glioma is a common brain malignancy, and the purpose of this study is to investigate the function of LINC02308 in glioma. METHODS: The differentially expressed lncRNAs were screened by microarray. The expression of LINC02308 in glioma tissues and cells was evaluated. The interaction among LINC02308, miR-30e-3p, and TM4SF1 was determined. Cell proliferation and apoptosis were evaluated. The expression of mTOR/AKT-signaling and apoptosis-related markers was detected by Western blot. A xenograft tumor mouse model was constructed to investigate the roles of LINC02308. RESULTS: LINC02308 was significantly overexpressed in glioma, and a high LINC02308 level was correlated with a poor prognosis. LINC02308 silencing markedly inhibited proliferation and reduced apoptosis of glioma cells and also suppressed tumor growth in the xenograft tumor mouse model. Finally, we demonstrated that LINC02308 played its oncogenic role through binding to miR-30e-3p so as to relieve miR-30e-3p-induced suppression of TM4SF1. CONCLUSIONS: LINC02308 promoted glioma tumorigenesis as a sponge of miR-30e-3p to upregulate TM4SF1 and activate AKT/mTOR pathway. Graphical Abstract Hypothesis diagram illustrates the function and mechanism of LINC02308 in glioma. A schematic representation of the functional mechanism of LINC02308 in glioma.


Assuntos
Glioma , MicroRNAs , Animais , Antígenos de Superfície , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
J Pathol ; 253(1): 55-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918742

RESUMO

Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
15.
Environ Toxicol ; 37(11): 2764-2779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214342

RESUMO

The herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used to control broadleaved weeds and has been associated with male infertility. We studied the molecular mechanisms of 2,4-D induced male reproductive system damage and the protective effects of Lycium barbarum polysaccharides (LBP) using Sprague Dawley rats and TM4 cells. Treatment with 2,4-D caused architectural and functional changes in the testis, including collapsed and atrophied seminiferous tubules with reduced number of spermatozoa, scarce sperm in the epididymal duct, low levels of serum testosterone, decreased superoxide dismutase and glutathione peroxidase activity, high malondialdehyde content, and increased apoptosis in the testis and epididymis. The expression of Fas, FasL, FADD, Pro-caspase-8, Cleaved-Caspase-8, Pro-Caspase-3, and Cleaved-Caspase-3 were significantly increased in the testicular tissue of 2,4-D-treated rats. The proliferative activity of TM4 cells decreased with an increase in dose and time of 2,4-D exposure, along with enhanced Fas/Fas ligand expression and a decreased concentration of inhibin B in TM4 cell culture medium. Depletion of Fas by specific shRNA transfection reversed the effects of 2,4-D in TM4 cells, further confirming the involvement of death receptor pathway in 2,4-D-mediated apoptosis of sertoli cells. Treatment with LBP also reversed the effects of 2,4-D in testicular cells, resulting in improved cell architecture along with enhanced proliferative capacity. Moreover, in response to LBP treatment of Sertoli cells, the content of inhibin B increased, the level of reactive oxygen species and malondialdehyde decreased, the activities of superoxide dismutase and glutathione peroxidase increased, and the rate of apoptosis as well as the expression of Fas/Fas ligand signaling pathway proteins decreased.


Assuntos
Herbicidas , Lycium , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/toxicidade , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Proteína Ligante Fas/metabolismo , Glutationa Peroxidase/metabolismo , Herbicidas/toxicidade , Lycium/metabolismo , Masculino , Malondialdeído/metabolismo , Polissacarídeos/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/metabolismo , Sementes/metabolismo , Superóxido Dismutase/metabolismo , Testículo , Testosterona
16.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628239

RESUMO

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Assuntos
Cetoconazol , Miconazol , Animais , Apoptose , Glutationa/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Cetoconazol/farmacologia , Masculino , Mamíferos/metabolismo , Camundongos , Miconazol/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955521

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world's population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Metabólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
18.
J Cell Mol Med ; 25(5): 2356-2364, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876386

RESUMO

The interaction between Axin and DVL2 is critical for the breaking down of the beta-catenin destruction complex and the activation of the Wnt/beta-catenin cascade. However, this biological process remains poorly understood. In the present study, TM4SF1 was identified as the interacting partner of DVL2 and positively regulated as Wnt/beta-catenin signalling by strengthening the DVL2-Axin interaction. The expression levels of TM4SF1 were elevated in hepatocellular carcinoma (HCC) and were induced by Kras signalling. The overexpression of TM4SF1 promoted the growth and motility of HCC cells, and up-regulated the target genes (Axin2 and cyclin D1). The down-regulation of TM4SF1 impaired the capability of HCC cells for growth, migration and metastasis. In addition, the down-regulation of TM4SF1 promoted the ubiquitination of beta-catenin. In summary, these results reveal the oncogenic functions of TM4SF1 in HCC progression and suggest that TM4SF1 might be a target for treatment.


Assuntos
Antígenos de Superfície/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas Desgrenhadas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo , Animais , Antígenos de Superfície/genética , Biomarcadores , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Proteínas de Neoplasias/genética
19.
Biochem Biophys Res Commun ; 566: 80-86, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34118595

RESUMO

Long non-coding RNAs (lncRNAs) are essential drivers or suppressors in human hepatocellular carcinoma (HCC) by participating in controlling transcription, translation, mRNA stability, and protein degradation protein-protein interaction. TM4SF1-AS1 is recently identified as a tumor-promoting factor in lung cancer. Nevertheless, its function in HCC and related molecular mechanisms remain unknown. Here, our data indicated that either hypoxia or hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (DMOG) induced the upregulation of TM4SF1-AS1 in HCC cells. HIF-1α knockdown rather than HIF-2α silencing remarkably abrogated hypoxia-upregulated TM4SF1-AS1 expression. Furthermore, we confirmed the elevated expression of TM4SF1-AS1 in HCC tissue samples and cell lines. The silencing of TM4SF1-AS1 prominently inhibited the proliferative, migratory, and invasive abilities of HCC cells. TM4SF1-AS1 depletion significantly blocked hypoxia-enhanced Hep3B cell proliferation and mobility. Interfering TM4SF1-AS1 remarkably reduced TM4SF1 mRNA and protein levels in HCC cells. But TM4SF1-AS1 knockdown did not impact the stability of TM4SF1 mRNA. Hypoxia enhanced the expression of TM4SF1 mRNA, which was subsequently decreased by TM4SF1-AS1 knockdown in HCC cells. We confirmed the positive correlation between TM4SF1 mRNA and TM4SF1-AS1 expression in HCC specimens. Finally, TM4SF1 prominently reversed the inhibitory role of TM4SF1-AS1 depletion in Hep3B cells. In summary, hypoxia-responsive TM4SF1-AS1 was overexpressed in human HCC and contributed to the malignant behaviors of tumor cells by enhancing TM4SF1-AS1 expression.


Assuntos
Antígenos de Superfície/genética , Carcinoma Hepatocelular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , Antígenos de Superfície/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , Ativação Transcricional , Regulação para Cima
20.
Mol Hum Reprod ; 27(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273154

RESUMO

Sertoli cells provide protection and nutrition for developing sperm. Each stage of sperm development occurs on the surface of Sertoli cells. MicroRNA (MiR)-125a-5p is involved in male reproduction. The current research aimed to probe the role of miR-125a-5p in Sertoli cell function. Functionally, miR-125a-5p knockdown facilitated Sertoli cell proliferation, while miR-125a-5p overexpression suppressed Sertoli cell proliferation, as evidenced by 5-ethynyl-20-deoxyuridine incorporation assay. Additionally, miR-125a-5p knockdown inhibited Sertoli cell apoptosis, while miR-125a-5p upregulation facilitated Sertoli cell apoptosis, as evidenced by flow cytometry analysis. Computationally, we identified four predicted mRNA targets of miR-125a-5p. Based on the results of luciferase reporter assay, miR-125a-5p was confirmed to bind to the predicted sequence in the Ras-related protein Rab-3D (RAB3D) 3'UTR. Rescue experiments showed that miR-125a-5p suppressed the proliferative ability of TM4 Sertoli cells and facilitated their apoptosis by targeting RAB3D. Finally, our data confirmed that miR-125a-5p and RAB3D modulated activation of the PI3K/AKT pathway. In conclusion, our data showed that miR-125a-5p regulated Sertoli cell proliferation and apoptosis by targeting RAB3D and regulating the PI3K/AKT pathway.


Assuntos
MicroRNAs/fisiologia , Células de Sertoli/fisiologia , Proteínas rab3 de Ligação ao GTP/genética , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA