Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
RNA ; 30(9): 1213-1226, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38918043

RESUMO

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.


Assuntos
Inibidores Enzimáticos , Quadruplex G , Telomerase , Telômero , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Telomerase/genética , Humanos , Telômero/metabolismo , Quadruplex G/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/química , Replicação do DNA/efeitos dos fármacos , DNA Polimerase I/antagonistas & inibidores , DNA Polimerase I/metabolismo , DNA/metabolismo , Aminoquinolinas , Porfirinas , DNA Primase
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473730

RESUMO

The G-quadruplex is one of the non-canonical structures formed by nucleic acids, which can be formed by guanine-rich sequences. They became the focus of much research when they were found in several oncogene promoter regions and also in the telomeres. Later on, they were discovered in viruses as well. Various ligands have been developed in order to stabilize DNA G-quadruplexes, which were believed to have an anti-cancer or antiviral effect. We investigated three of these ligands, and whether they can also affect the stability of the G-quadruplex-forming sequences of the RNA genome of SARS-CoV-2. All three investigated oligonucleotides showed the G-quadruplex form. We characterized their stability and measured their thermodynamic parameters using the Förster resonance energy transfer method. The addition of the ligands caused an increase in the unfolding temperature, but this effect was smaller compared to that found earlier in the case of G-quadruplexes of the hepatitis B virus, which has a DNA genome.


Assuntos
Acridinas , COVID-19 , Compostos de Anéis Fundidos , Quadruplex G , Porfirinas , Humanos , SARS-CoV-2
3.
J Med Virol ; 95(1): e28299, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366981

RESUMO

Monkeypox virus (MPXV) is a member of Orthopoxvirus in the Poxviridae family, causing a Public Health Emergency of International Concern. The number of cases and geographic range has increased significantly in 2022. Identification of MPXV-specific therapeutic targets is urgent. G-quadruplex (GQ) secondary structures attract great attention as potential targets for antiviral strategy. Whether GQs are present in the MPXV genome remains inconclusive. In this study, we aim to characterize the GQs encoded by MPXV. Through a series of biophysical experiments, we characterized the formation potential of MPXV-encoded GQs and evaluated the binding and stabilization abilities of GQ ligands including BRACO-19, pyridostatin, and TMPyP4 to GQs encoded by MPXV. Moreover, GQ ligands suppressed the gene transcription of MPXV sequences containing GQ. BRACO-19 and TMPyP4 were able to inhibit vaccinia virus replication. We demonstrated the existence of MPXV GQ and reinforced the idea that GQs could be novel antiviral targets. Targeting these GQ sequences with GQ-binding molecules may represent a new approach for MPXV therapy.


Assuntos
Quadruplex G , Mpox , Humanos , Monkeypox virus/genética , Antivirais/farmacologia , Ligantes
4.
J Med Virol ; 95(5): e28783, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212309

RESUMO

Monkeypox virus (MPXV) is a double-stranded DNA virus from the family Poxviridae, which is endemic in West and Central Africa. Various human outbreaks occurred in the 1980s, resulting from a cessation of smallpox vaccination. Recently, MPXV cases have reemerged in non-endemic nations, and the 2022 outbreak has been declared a public health emergency. Treatment optionsare limited, and many countries lack the infrastructure to provide symptomatic treatments. The development of cost-effective antivirals could ease severe health outcomes. G-quadruplexes have been a target of interest in treating viral infections with different chemicals. In the present work, a genomic-scale mapping of different MPXV isolates highlighted two conserved putative quadruplex-forming sequences MPXV-exclusive in 590 isolates. Subsequently, we assessed the G-quadruplex formation using circular dichroism spectroscopy and solution small-angle X-ray scattering. Furthermore, biochemical assays indicated the ability of MPXV quadruplexes to be recognized by two specific G4-binding partners-Thioflavin T and DHX36. Additionally, our work also suggests that a quadruplex binding small-molecule with previously reported antiviral activity, TMPyP4, interacts with MPXV G-quadruplexes with nanomolar affinity in the presence and absence of DHX36. Finally, cell biology experiments suggests that TMPyP4 treatment substantially reduced gene expression of MPXV proteins. In summary, our work provides insights into the G-quadruplexes from the MPXV genome that can be further exploited to develop therapeutics.


Assuntos
Quadruplex G , Monkeypox virus , Mpox , Monkeypox virus/genética , Quadruplex G/efeitos dos fármacos , Mpox/virologia , Genoma Viral , Espalhamento a Baixo Ângulo , Difração de Raios X , Antivirais/farmacologia , Porfirinas/farmacologia , Inibidores Enzimáticos/farmacologia
5.
J Med Virol ; 94(6): 2519-2527, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35075669

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus affecting human health globally. G-quadruplex secondary structures attract great attention as potential targets for antiviral strategy. In this study, we show that the CHIKV genome possesses several conserved potential G-quadruplex sequences. G-quadruplex ligands BRACO-19 and TMPyP4 could stabilize the CHIKV G-quadruplex and inhibit the transcription of constructs containing CHIKV G-quadruplex sequences. Importantly, BRACO-19 and TMPyP4 suppress CHIKV replication. Our study not only reinforces the presence of viral G-quadruplex sequences but also suggests that targeting G-quadruplex structure could represent a novel strategy to inhibit CHIKV.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Antivirais/farmacologia , Vírus Chikungunya/genética , Humanos , Ligantes , Replicação Viral
6.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151281

RESUMO

Human telomeres were one of the first discovered and characterized sequences forming quadruplex structures. Association of these structures with oncogenic and tumor suppressor proteins suggests their important role in cancer development and therapy efficacy. Since cationic porphyrin TMPyP4 is known as G-quadruplex stabilizer and telomerase inhibitor, the aim of the study was to analyze the anticancer properties of this compound in two different human breast-cancer MCF7 and MDA-MB-231 cell lines. The cytotoxicity of TMPyP4 alone or in combination with doxorubicin was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) and clonogenic assays, and the cell-cycle alterations were analyzed by flow cytometry. Telomerase expression and activity were evaluated using qPCR and telomeric repeat amplification protocol (TRAP) assays, respectively. The contribution of G-quadruplex inhibitor to protein pathways engaged in cell survival, DNA repair, adhesion, and migration was performed using immunodetection. Scratch assay and functional assessment of migration and cell adhesion were also performed. Consequently, it was revealed that in the short term, TMPyP4 neither revealed cytotoxic effect nor sensitized MCF7 and MDA-MB-231 to doxorubicin, but altered breast-cancer cell adhesion and migration. It suggests that TMPyP4 might substantially contribute to a significant decrease in cancer cell dissemination and, consequently, cancer cell survival reduction. Importantly, this effect might not be associated with telomeres or telomerase.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Porfirinas/farmacologia , Telomerase/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismo
7.
Biochem Biophys Res Commun ; 495(4): 2410-2417, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29274339

RESUMO

BACKGROUND: An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. METHODS: Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K+. RESULTS: The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. CONCLUSIONS: For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules.


Assuntos
Proteína C9orf72/química , Proteína C9orf72/genética , Citosina/química , DNA/química , Guanina/química , RNA/química , Sequências Repetitivas de Ácido Nucleico , Composição de Bases , Sítios de Ligação , Calorimetria , Dicroísmo Circular , DNA/genética , Ligação Proteica , RNA/genética , Relação Estrutura-Atividade , Termodinâmica
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 522-531, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29097300

RESUMO

BACKGROUND: Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in >80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. METHODS: UV-Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. RESULTS: TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na+ or K+. T-Jump kinetic experiments show that the rates of formation and dissociation of these complexes in the ms time scale differ by one order of magnitude. MD simulations reveal that, in K+ buffer, "hybrid 1" conformation yields kinetic constants on interaction with TMPyP4 one order lower than "hybrid 2". The binding involves π-π stacking with external loop bases. CONCLUSIONS: For the first time we show that for a particular buffer TMPyP4 interacts in a kinetically different way with the two Tel22 conformations even if the complexes formed are thermodynamically indistinguishable. GENERAL SIGNIFICANCE: G-quadruplexes, endowed with technological applications and potential impact on regulation mechanisms, define a new research field. The possibility of building different conformations from same sequence is a complex issue that confers G-quadruplexes very interesting features. The obtaining of reliable kinetic data constitutes an efficient tool to determine reaction mechanisms between conformations and small molecules.


Assuntos
Quadruplex G/efeitos dos fármacos , Porfirinas/farmacologia , Telômero/efeitos dos fármacos , Soluções Tampão , Calorimetria , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Potássio/farmacologia , Espectrofotometria Ultravioleta , Telômero/química , Termodinâmica
9.
Biochim Biophys Acta ; 1860(5): 902-909, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26363462

RESUMO

BACKGROUND: The human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure. METHODS: Isothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na(+)] or [K(+)]≈0.15M). RESULTS: The apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a "four-independent-sites model". The two highest-affinity sites exhibit a K in the range of 10(8) to 10(10)M(-1) with the two lower-affinity sites exhibiting a K in the range of 10(4) to 10(5)M(-1). Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a "two-independent-sites model" in which only the end-stacking binding mode is observed with a K in the range of 10(4) to 10(5)M(-1). CONCLUSIONS: In the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an "end stacking" mechanism for the higher affinity binding mode and an "intercalation" mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the "end-stacking" mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands. GENERAL SIGNIFICANCE: The preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex.


Assuntos
Cobalto/química , Cobre/química , Níquel/química , Oligonucleotídeos/química , Porfirinas/química , Zinco/química , Sítios de Ligação , Calorimetria , Cátions Bivalentes , Dicroísmo Circular , Quadruplex G , Humanos , Cinética , Ligantes , Telômero/química , Termodinâmica
10.
Biol Res ; 50(1): 24, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673331

RESUMO

BACKGROUND: The aim of the present study was to investigate the potential effects of the 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. RESULTS: After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen-activated protein kinase (MAPK), phosphated p38 MAPK (p-p38 MAPK), capase-3, MAPKAPK2 (MK-2) and poly ADP-ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose-dependent manner. In addition, the up-regulation of p-p38 MAPK expression levels was detected in TMPyP4-treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. CONCLUSIONS: It was indicated that TMPyP4-inhibited proliferation and -induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma.


Assuntos
Antineoplásicos/farmacologia , Porfirinas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/análise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Feminino , Formazans , Células HeLa/efeitos dos fármacos , Humanos , Reprodutibilidade dos Testes , Sais de Tetrazólio , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
Mol Carcinog ; 55(5): 897-909, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945949

RESUMO

Previous studies have shown that promoter regions of many proto-oncogenes can fold into G-quadruplexes, which are potentially involved in the regulation of genes. Bioinformatics analysis suggested that there was a G-rich sequence within -48 to -26 region of the human MET promoter (named Pu23WT). In this study, we proved that Pu23WT adopted an intramolecular parallel G-quadruplex structure under physiological conditions in vitro, and the cationic porphyrin TMPyP4 enhanced the stability of the Pu23WT G-quadruplex. To better understand the functions of Pu23WT in the MET expression, we performed a series of analysis on several cancer cells. Experimental data revealed that TMPyP4 treatment attenuated the expression of MET in HepG2, BGC823, and U87MG cells, resulting in the cellular proliferation inhibition, G1 phase cell cycle arrest and cell migration retardation. ChIP assay results indicated that TMPyP4 probably prohibited the Pu23WT G-quadruplex from binding to the activator Sp1, which could be one of the mechanisms that led to the transcription inhibition of MET gene. It is the first study on the G-quadruplex structure in the human MET promoter and its functions in cancer cells. We believe that this structure is a potential target for anticancer treatment.


Assuntos
Quadruplex G , Neoplasias/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-met/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Células Hep G2 , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Porfirinas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/química , Fator de Transcrição Sp1/metabolismo
12.
J Recept Signal Transduct Res ; 36(2): 167-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26382555

RESUMO

BACKGROUND: The aim of this study was to investigate the potential effects of the 5, 10, 15, 20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of SW480 cells and the underlying mechanisms by which TMPyP4 exerted its actions. METHODS: After treated with different doses of TMPyP4, cell viability was determined by MTT method, the apoptosis was observed by flow cytometry (FCM) and the expression of Wnt, GSK-3ß, ß-catenin and cyclinD1 was measured by RT-PCR and Western blot analysis. RESULTS: The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of SW480 cells in a dose-dependent manner. In addition, the downregulation of Wnt, ß-catenin and cyclinD1 expression levels was detected in TMPyP4-treated SW480 cells. However, followed by the block of Wnt signaling pathway using siRNA methods, the effects of TMPyP4 on proliferation and apoptosis of SW480 cells were significantly reduced. CONCLUSION: It indicates that the TMPyP4-inhibited proliferation and -induced apoptosis in SW480 cells was accompanied by the suppression of Wnt/ß-catenin signaling pathway. Therefore, TMPyP4 may represent a potential therapeutic method for the treatment of colon carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Porfirinas/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Interferente Pequeno/genética , Via de Sinalização Wnt/efeitos dos fármacos
13.
Tumour Biol ; 37(7): 9967-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26815508

RESUMO

The WT1 gene is an important oncogene, and its overexpression is considered as an effective target for anticancer therapy. Regulation of its gene transcription is one way for WT1-targeting drug design. Recently, in silico analysis of some oncogene promoters like WT1 showed some guanine-rich regions with the ability to form G-quadruplex structures. Ligands like 5,10,15,20-tetra(N-methyl-4-pyridyl)-porphine (TMPyP4) have predominant effect on G-quadruplex stabilization. The aim of this study was to understand the effect of TMPyP4 on WT1 gene transcription via stabilization of promoter G-quadruplexes. We examined the formation of new G-quadruplex motifs in WT1 promoter in the presence of TMPyP4. In order to understand the nature of its interaction with WT1 promoter quadruplexes, differential pulse voltammetry (DPV), circular dichroism (CD), polyacrylamide gel electrophoresis, electrophoretic mobility shift assay (EMSA), polymerase chain reaction (PCR) stop assays, and quantitative RT-PCR were performed. According to the results, the WT1 promoter can form stable intramolecular parallel G-quadruplexes. In addition, after 48 and 96 h of incubation, 100 µM TMPyP4 reduced the WT1 transcription to 9 and 0.4 %, respectively, compare to control. We report that ligand-mediated stabilization of G-quadruplexes within the WT1 promoter can silence WT1 expression. This study might offer the basis for the reasonable design and improvement of new porphyrin derivatives as effective anti-leukemia agents for cancer therapy.


Assuntos
DNA de Neoplasias/química , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Leucemia Eritroblástica Aguda/genética , Porfirinas/metabolismo , Proteínas WT1/antagonistas & inibidores , Proliferação de Células , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Ligantes , Modelos Moleculares , Porfirinas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteínas WT1/genética , Proteínas WT1/metabolismo
14.
J Biol Chem ; 289(8): 4653-9, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24371143

RESUMO

Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Quadruplex G/efeitos dos fármacos , Porfirinas/farmacologia , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Proteína C9orf72 , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Porfirinas/química , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Fatores de Processamento de Serina-Arginina
15.
Biochim Biophys Acta ; 1830(10): 4769-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774591

RESUMO

BACKGROUND: Guanine-rich sequence of c-myc nuclease hypersensitive element (NHE) III1 is known to fold in G-quadruplex and subsequently serves as a transcriptional silencer. Cellular nucleic-acid-binding protein (CNBP), a highly conserved zinc-finger protein with multiple biological functions, could bind to c-myc NHE III1 region, specifically to the single strand G-rich sequence. METHODS: In the present study, a variety of methods, including cloning, expression and purification of protein, EMSA, CD, FRET, Ch-IP, RNA interference, luciferase reporter assay, SPR, co-immunoprecipitation, and co-transfection, were applied to investigate the mechanism for the role of CNBP in regulating c-myc transcription. RESULTS: We found that human CNBP specifically bound to the G-rich sequence of c-myc NHE III1 region both in vitro and in cellulo, and subsequently promoted the formation of G-quadruplex. CNBP could induce a transient decrease followed by an increase in c-myc transcription in vivo. The interaction of CNBP with NM23-H2 was responsible for the increase of c-myc transcription. CONCLUSIONS: Based on above experimental results, a new mechanism, involving G-quadruplex related CNBP/NM23-H2 interaction, for the regulation of c-myc transcription was proposed. GENERAL SIGNIFICANCE: These findings indicated that the regulation of c-myc transcription through NHE III1 region might be governed by mechanisms involving complex protein-protein interactions, and suggested a new possibility of CNBP as a potential anti-cancer target based on CNBP's biological function in c-myc transcription.


Assuntos
Genes myc , Proteínas de Ligação a RNA/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Imunoprecipitação da Cromatina , Dicroísmo Circular , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Humanos , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Ativação Transcricional
16.
Methods ; 64(1): 19-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23562626

RESUMO

The telomere G-quadruplex-binding and telomerase-inhibiting capacity of two cationic (TMPyP4 and PIPER) and two anionic (phthalocyanine and Hemin) G-quadruplex-ligands were examined under conditions of molecular crowding (MC). Osmotic experiments showed that binding of the anionic ligands, which bind to G-quadruplex DNA via π-π stacking interactions, caused some water molecules to be released from the G-quadruplex/ligand complex; in contrast, a substantial number of water molecules were taken up upon electrostatic binding of the cationic ligands to G-quadruplex DNA. These behaviors of water molecules maintained or reduced the binding affinity of the anionic and the cationic ligands, respectively, under MC conditions. Consequently, the anionic ligands (phthalocyanine and Hemin) robustly inhibited telomerase activity even with MC; in contrast, the inhibition of telomerase caused by cationic TMPyP4 was drastically reduced by MC. These results allow us to conclude that the binding of G-quadruplex-ligands to G-quadruplex via non-electrostatic interactions is preferable for telomerase inhibition under physiological conditions.


Assuntos
Quadruplex G , Telomerase/química , Telômero/química , Ligantes , Modelos Moleculares , Eletricidade Estática , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Água/química
17.
Biomed Pharmacother ; 177: 117110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002439

RESUMO

Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.


Assuntos
Apoptose , Regulação para Baixo , Peróxido de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Ovarianas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Regulação para Baixo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
J Biomol Struct Dyn ; : 1-16, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878583

RESUMO

We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.

19.
Pharmaceutics ; 15(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111678

RESUMO

The combination of TiO2 nanoparticles (NPs) and photosensitizers (PS) may offer significant advantages in photodynamic therapy (PDT) of melanoma, such as improved cell penetration, enhanced ROS production, and cancer selectivity. In this study, we aimed to investigate the photodynamic effect of 5,10,15,20-(Tetra-N-methyl-4-pyridyl)porphyrin tetratosylate (TMPyP4) complexes with TiO2 NPs on human cutaneous melanoma cells by irradiation with 1 mW/cm2 blue light. The porphyrin conjugation with the NPs was analyzed by absorption and FTIR spectroscopy. The morphological characterization of the complexes was performed by Scanning Electron Microscopy and Dynamic Light Scattering. The singlet oxygen generation was analyzed by phosphorescence at 1270 nm. Our predictions indicated that the non-irradiated investigated porphyrin has a low degree of toxicity. The photodynamic activity of the TMPyP4/TiO2 complex was assessed on the human melanoma Mel-Juso cell line and non-tumor skin CCD-1070Sk cell line treated with various concentrations of the PS and subjected to dark conditions and visible light-irradiation. The tested complexes of TiO2 NPs with TMPyP4 presented cytotoxicity only after activation by blue light (405 nm) mediated by the intracellular production of ROS in a dose-dependent manner. The photodynamic effect observed in this evaluation was higher in melanoma cells than the effect observed in the non-tumor cell line, demonstrating a promising potential for cancer-selectivity in PDT of melanoma.

20.
Int J Biol Macromol ; 231: 123263, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36649868

RESUMO

We have identified a parallel G-quadruplex (R1WT) in the distal promoter region (-821 base-pairs upstream of the TSS) of the pluripotent gene REX1. Through biophysical and biochemical approach, we have characterized the G-quadruplex (GQ) as a potential molecular switch that may control REX1 promoter activity to determine the transcriptional fate. Small- molecule interactive study of the monomeric form of R1WT (characterized as R1mut2) with TMPyP4 and BRACO-19 revealed GQ destabilization upon interaction with TMPyP4 and stabilization upon interaction with BRACO-19. This distinctive drug interactivity suggests the in cellulo R1WT to be a promising drug target. The endogenous existence of R1WT was confirmed by BG4 antibody derived chromatin immunoprecipitation experiment. Here in, we also report the endogenous interaction of GQ specific transcription factors (TFs) with R1WT region in the human chromatin of cancer cell. The wild-type G-quadruplex was found to interact with four important transcription factors, (i) specificity protein (Sp1) (ii) non-metastatic cell 2 (NM23-H2): a diphosphatase (iii) cellular nucleic acid binding protein (CNBP) and (iv) heterogenous nuclear ribonucleoprotein K (hnRNPK) in the REX1 promoter. In contrast, nucleolin protein (NCL) binding was found to be low to the said G-quadruplex. The flexibility of R1WT between folded and unfolded states, obtained from experimental and computational analysis strongly suggests R1WT to be an important gene regulatory element in the genome. It controls promoter DNA relaxation with the coordinated interaction of transcription factors, the deregulation of which seeds stemness characteristic in cancer cells for further metastatic progression.


Assuntos
Quadruplex G , Humanos , Fatores de Transcrição/genética , DNA/química , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA