Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell ; 176(6): 1447-1460.e14, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799039

RESUMO

The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.


Assuntos
DNA/imunologia , Nucleotidiltransferases/metabolismo , Tolerância a Antígenos Próprios/imunologia , Acetilação , Sequência de Aminoácidos , Animais , Aspirina/farmacologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linhagem Celular , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Células THP-1
3.
Annu Rev Cell Dev Biol ; 36: 85-114, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692592

RESUMO

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.


Assuntos
Membrana Nuclear/patologia , Animais , Instabilidade Genômica , Humanos , Imunidade Inata , Micronúcleo Germinativo/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo
4.
Mol Cell ; 83(2): 266-280.e6, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638783

RESUMO

Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.


Assuntos
Imunidade Inata , Interferon Tipo I , DNA/metabolismo , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Membrana/metabolismo
5.
Mol Cell ; 83(4): 556-573.e7, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36696898

RESUMO

The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.


Assuntos
DNA , Nucleotidiltransferases , DNA/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Membrana , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV
6.
Mol Cell ; 83(20): 3642-3658.e4, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37788673

RESUMO

The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope. In cells harboring MN, ATR or CDK1 inhibition reduces MN rupture. Consequently, ATR inhibitor (ATRi) diminishes activation of the cytoplasmic DNA sensor cGAS and compromises cGAS-dependent autophagosome accumulation in MN and clearance of micronuclear DNA. Furthermore, ATRi reduces cGAS-mediated senescence and killing of MN-bearing cancer cells by natural killer cells. Thus, in addition to the canonical ATR signaling pathway, an ATR-CDK1-Lamin A/C axis promotes MN rupture to clear damaged DNA and cells, protecting the genome in cell populations through unexpected cell-autonomous and cell-non-autonomous mechanisms.


Assuntos
Dano ao DNA , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Nucleotidiltransferases/genética , DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
7.
Cell ; 163(7): 1641-54, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687355

RESUMO

Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 µm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis.


Assuntos
Instabilidade Cromossômica , Cromossomos Humanos , Instabilidade Genômica , Neoplasias/genética , Telômero , Aberrações Cromossômicas , Citocinese , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Mitose , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo
8.
Mol Cell ; 81(4): 739-755.e7, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606975

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for the immune response to cancer and pathogen infection. Here, we discover that cGAS-DNA phase separation is required to resist negative regulation and allow efficient sensing of immunostimulatory DNA. We map the molecular determinants of cGAS condensate formation and demonstrate that phase separation functions to limit activity of the cytosolic exonuclease TREX1. Mechanistically, phase separation forms a selective environment that suppresses TREX1 catalytic function and restricts DNA degradation to an outer shell at the droplet periphery. We identify a TREX1 mutation associated with the severe autoimmune disease Aicardi-Goutières syndrome that increases penetration of TREX1 into the repressive droplet interior and specifically impairs degradation of phase-separated DNA. Our results define a critical function of cGAS-DNA phase separation and reveal a molecular mechanism that balances cytosolic DNA degradation and innate immune activation.


Assuntos
Doenças Autoimunes do Sistema Nervoso/enzimologia , Citosol/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Malformações do Sistema Nervoso/enzimologia , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Catálise , Linhagem Celular Tumoral , DNA/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Malformações do Sistema Nervoso/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética
9.
Mol Cell ; 81(4): 724-738.e9, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33476576

RESUMO

Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.


Assuntos
Dano ao DNA , Retículo Endoplasmático/metabolismo , Exodesoxirribonucleases/metabolismo , Micronúcleos com Defeito Cromossômico , Mutação , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Retículo Endoplasmático/genética , Ativação Enzimática/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Transporte Proteico/genética
10.
Trends Genet ; 40(1): 69-82, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891096

RESUMO

Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , DNA/genética , Instabilidade Genômica/genética
11.
Hum Mol Genet ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796715

RESUMO

The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations-particularly those outside of the core catalytic domains-remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupts TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.

12.
Bioessays ; 46(8): e2400066, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837436

RESUMO

The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.


Assuntos
Exodesoxirribonucleases , Instabilidade Genômica , Fosfoproteínas , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animais , Dano ao DNA , Citosol/metabolismo , Imunidade Inata/genética , Inflamação/genética , Reparo do DNA/genética
13.
Proc Natl Acad Sci U S A ; 120(33): e2305420120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549268

RESUMO

Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , DNA
14.
J Biol Chem ; 300(7): 107438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838778

RESUMO

HIV-1 integration into the human genome is dependent on 3'-processing of the viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower (approximately 2-2.5-fold) than the unprocessed HIV-1 DNA by TREX1. The kcat values of human TREX1 for the processed U5 and U3 DNA substrates were 3.8 s-1 and 4.5 s-1, respectively. In contrast, the unprocessed U5 and U3 substrates were cleaved at 10.2 s-1 and 9.8 s-1, respectively. The efficiency of degradation (kcat/Km) of the 3'-processed DNA (U5-70.2 and U3-28.05 pM-1s-1) was also significantly lower than the unprocessed DNA (U5-103.1 and U3-65.3 pM-1s-1). Furthermore, the binding affinity (Kd) of TREX1 was markedly lower (∼2-fold) for the 3'-processed DNA than the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.


Assuntos
DNA Viral , Exodesoxirribonucleases , HIV-1 , Fosfoproteínas , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , HIV-1/metabolismo , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , DNA Viral/metabolismo , DNA Viral/genética , DNA Viral/química , Cinética , Integração Viral , Termodinâmica
15.
Semin Cell Dev Biol ; 123: 131-139, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33839019

RESUMO

The nuclear envelope compartmentalizes the eukaryotic genome, provides mechanical resistance, and regulates access to the chromatin. However, recent studies have identified several conditions where the nuclear membrane ruptures during interphase, breaking down this compartmentalization leading to DNA damage, chromothripsis, and kataegis. This review discusses three major circumstances that promote nuclear membrane rupture, nuclear deformation, chromatin bridges, and micronucleation, and how each of these nuclear catastrophes results in DNA damage. In addition, we highlight recent studies that demonstrate a single chromosome missegregation can initiate a cascade of events that lead to accumulating damage and even multiple rounds of chromothripsis.


Assuntos
Cromotripsia , Instabilidade Genômica , Núcleo Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Humanos , Membrana Nuclear/genética
16.
Biochem Cell Biol ; 102(1): 38-46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643478

RESUMO

The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferon Tipo I , Animais , Retroelementos/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação/genética , Doenças Autoimunes do Sistema Nervoso/genética , Mamíferos/genética , Mamíferos/metabolismo
17.
Am J Med Genet A ; 194(5): e63510, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135344

RESUMO

Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Azetidinas , Doenças dos Gânglios da Base , Calcinose , Inibidores de Janus Quinases , Linfocitose , Malformações do Sistema Nervoso , Purinas , Pirazóis , Sulfonamidas , Masculino , Gravidez , Feminino , Humanos , Lactente , Linfocitose/líquido cefalorraquidiano , Linfocitose/genética , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/tratamento farmacológico , Doenças dos Gânglios da Base/genética , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Calcinose/genética , Atrofia
18.
Acta Pharmacol Sin ; 45(5): 890-899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38177693

RESUMO

Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.


Assuntos
Neoplasias , Nucleotídeos Cíclicos , Humanos , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Nucleotídeos Cíclicos/metabolismo , Animais , Sistemas do Segundo Mensageiro , Proteínas de Membrana/metabolismo , Transdução de Sinais , Progressão da Doença , Microambiente Tumoral/imunologia , Nucleotidiltransferases/metabolismo
19.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791317

RESUMO

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Assuntos
Senescência Celular , Miostatina , Animais , Miostatina/genética , Miostatina/metabolismo , Bovinos , Senescência Celular/genética , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Transdução de Sinais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Cultivadas
20.
Eur J Immunol ; 52(5): 825-834, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35112355

RESUMO

The Three Prime Repair EXonuclease I (TREX1) is critical for degrading post-apoptosis DNA. Mice expressing catalytically inactive TREX1 (TREX1 D18N) develop lupus-like autoimmunity due to chronic sensing of undegraded TREX1 DNA substrates, production of the inflammatory cytokines, and the inappropriate activation of innate and adaptive immunity. This study aimed to investigate Thelper (Th) dysregulation in the TREX1 D18N model system as a potential mechanism for lupus-like autoimmunity. Comparison of immune cells in secondary lymphoid organs, spleen and peripheral lymph nodes (LNs) between TREX1 D18N mice and the TREX1 null mice revealed that the TREX1 D18N mice exhibit a Th1 bias. Additionally, the T-follicular helper cells (Tfh) and the germinal celter (GC) B cells were also elevated in the TREX1 D18N mice. Targeting Bcl6, a lineage-defining transcription factor for Tfh and GC B cells, with a commercially available Bcl6 inhibitor, FX1, attenuated Tfh, GC, and Th1 responses, and rescued TREX1 D18N mice from autoimmunity. The study presents Tfh and GC B-cell responses as potential targets in autoimmunity and that Bcl6 inhibitors may offer therapeutic approach in TREX1-associated or other lupus-like diseases.


Assuntos
Autoimunidade , Centro Germinativo , Animais , Diferenciação Celular , DNA , Modelos Animais de Doenças , Exodesoxirribonucleases , Camundongos , Camundongos Knockout , Fosfoproteínas , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA