Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 41(3): 600-607, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31898845

RESUMO

The human TRMT1 gene encodes an RNA methyltransferase enzyme responsible for catalyzing dimethylguanosine (m2,2G) formation in transfer RNAs (tRNAs). Frameshift mutations in TRMT1 have been shown to cause autosomal-recessive intellectual disability (ID) in the human population but additional TRMT1 variants remain to be characterized. Here, we describe a homozygous TRMT1 missense variant in a patient displaying developmental delay, ID, and epilepsy. The missense variant changes an arginine residue to a cysteine (R323C) within the methyltransferase domain and is expected to perturb protein folding. Patient cells expressing TRMT1-R323C exhibit a deficiency in m2,2G modifications within tRNAs, indicating that the mutation causes loss of function. Notably, the TRMT1 R323C mutant retains tRNA binding but is unable to rescue m2,2G formation in TRMT1-deficient human cells. Our results identify a pathogenic point mutation in TRMT1 that perturbs tRNA modification activity and demonstrate that m2,2G modifications are disrupted in the cells of patients with TRMT1-associated ID disorders.


Assuntos
Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação de Sentido Incorreto , RNA de Transferência/genética , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Consanguinidade , Ativação Enzimática , Feminino , Loci Gênicos , Humanos , Linhagem , Ligação Proteica , RNA de Transferência/metabolismo
2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502865

RESUMO

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.

3.
Elife ; 122024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814682

RESUMO

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.


The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.


Assuntos
Proteólise , RNA de Transferência , SARS-CoV-2 , tRNA Metiltransferases , Humanos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , RNA de Transferência/metabolismo , RNA de Transferência/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
4.
Sci China Life Sci ; 66(10): 2295-2309, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204604

RESUMO

TRMT1 is an N2-methylguanosine (m2G) and N2,N2-methylguanosine (m22G) methyltransferase that targets G26 of both cytoplasmic and mitochondrial tRNAs. In higher eukaryotes, most cytoplasmic tRNAs with G26 carry m22G26, although the majority of mitochondrial G26-containing tRNAs carry m2G26 or G26, suggesting differences in the mechanisms by which TRMT1 catalyzes modification of these tRNAs. Loss-of-function mutations of human TRMT1 result in neurological disorders and completely abrogate tRNA:m22G26 formation. However, the mechanism underlying the independent catalytic activity of human TRMT1 and identity of its specific substrate remain elusive, hindering a comprehensive understanding of the pathogenesis of neurological disorders caused by TRMT1 mutations. Here, we showed that human TRMT1 independently catalyzes formation of the tRNA:m2G26 or m22G26 modification in a substrate-dependent manner, which explains the distinct distribution of m2G26 and m22G26 on cytoplasmic and mitochondrial tRNAs. For human TRMT1-mediated tRNA:m22G26 formation, the semi-conserved C11:G24 serves as the determinant, and the U10:A25 or G10:C25 base pair is also required, while the size of the variable loop has no effect. We defined the requirements of this recognition mechanism as the "m22G26 criteria". We found that the m22G26 modification occurred in almost all the higher eukaryotic tRNAs conforming to these criteria, suggesting the "m22G26 criteria" are applicable to other higher eukaryotic tRNAs.


Assuntos
Doenças do Sistema Nervoso , tRNA Metiltransferases , Humanos , Metilação , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
5.
Mol Cell Biol ; 37(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784718

RESUMO

Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.


Assuntos
Guanosina/análogos & derivados , Deficiência Intelectual/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Catálise , Proliferação de Células , Sobrevivência Celular , Guanosina/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA