Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 21(1): 166, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832434

RESUMO

BACKGROUND: Septic shock with myocardial depression is very common in intensive care units. However, the exact molecular mechanisms underlying sepsis-induced myocardial depression remain unclear. Whether the profiles of transcripts of uncertain coding potential (TUCPs) differ between patients with and without myocardial depression is also unknown. Our study aimed to find expression differences between groups of TUCPs and determine their potential functions in a preclinical model. METHODS: We generated rat models of hypodynamic septic shock induced by lipopolysaccharide. A total of 12 rats were established and left ventricular tissue from each was collected. We performed RNA-seq to identify TUCPs in each sample. Transcripts with an corrected P value of < 0.05 were defined as differentially expressed (DE). We also performed GO terms and KEGG analysis to identify the potential functions of DE TUCPs. RESULTS: A total of 4,851 TUCPs were identified in heart samples, 85 of which were expressed differently between the sepsis and control groups. Further bioinformatic analyses suggested that TUCPs play important roles in myocardial contraction, energy regulation, and metabolic processes, and are also involved in the regulation of several pathways. CONCLUSION: Our results demonstrate that TUCPs both participate in and mediate the pathological process of myocardial depression. Our study improves the understanding of the basic molecular mechanisms underlying myocardial depression from a novel perspective.


Assuntos
Perfilação da Expressão Gênica , Cardiopatias/genética , Miocárdio/metabolismo , Choque Séptico/genética , Transcriptoma , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Masculino , RNA-Seq , Ratos Wistar , Choque Séptico/complicações , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia , Transdução de Sinais
2.
Mol Genet Genomics ; 294(1): 23-34, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30159616

RESUMO

Transcripts of uncertain coding potential (TUCP) are part of the LncRNAs, which encode some polypeptides. However, the abundance of TUCP transcripts and their roles in Ligon-linless-1 (Li-1) cotton mutant during the early termination of fiber development are still not documented. Li-1 mutant is one of the excellent modules for investigating fiber elongation processes due to its unique fiber developmental stages. To examine the function of TUCP in cotton fiber development, it is important to identify TUCPs and their involvement in fiber development. In this study, we found that 11104 TUCP transcripts were removed by coding potential criteria of Pfam domain scan. Additionally, differential expression levels of TUCP transcripts were detected between Li-1 mutant and the wild-type (WT), which imply their possible functions in cotton fiber development. These results further revealed that a great number of differentially expressed TUCP transcripts in cotton were identified at 8 DPA, followed by 0 DPA and stem. However, these might explain an undesirable function in cotton fiber development. The gene ontology and pathway analysis, based on differential expression patterns of TUCP transcripts on targeted genes, identified the transport process, cytoskeleton structure, membrane permeability and fatty acids. These give new insight into significant involvement in early cessation of cotton fiber development and abnormal stem. The RNA-seq and qRT-PCR expression analyses of TUCP transcripts evidently singled out three possible genes, TUCP_010675, TUCP_001475, TUCP_009444 and other targeted mRNAs. The expression pattern of TUCP transcripts and their mRNA targets provided valuable evidence for further investigations on the biological functions of TUCP in cotton fiber development. The study findings may serve as a useful tool for comparative analysis of TUCP transcripts in cotton species and assist in selection of the applicable candidate genes for further functional analyses, genetic improvement and genetic engineering of cotton fiber development.


Assuntos
Perfilação da Expressão Gênica/métodos , Gossypium/crescimento & desenvolvimento , Mutação , RNA Longo não Codificante/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Gossypium/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA