Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942251

RESUMO

Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Takifugu , Receptores Toll-Like , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Takifugu/imunologia , Takifugu/genética , Doenças dos Peixes/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Imunidade Inata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Regulação da Expressão Gênica/imunologia , Edwardsiella/fisiologia , Edwardsiella/imunologia , Vibrio/fisiologia
2.
Ecotoxicol Environ Saf ; 282: 116718, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024957

RESUMO

Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 µg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 µg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 µg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.


Assuntos
Cobre , Proteoma , Takifugu , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Proteoma/efeitos dos fármacos , Takifugu/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Biomarcadores/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Ecotoxicol Environ Saf ; 272: 116064, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340599

RESUMO

Copper is an environmental pollutant, and copper in aquatic environments mainly comes from soil and water. It enters the environment through atmospheric deposition, sewage discharge, and industrial production, and enters aquatic organisms, causing toxicity. Takifugu rubripes (T. rubripes) is a marine fish with high economic value. Due to the toxic effects of heavy metals on aquatic organisms such as fish, it can affect the gut community and metabolites of fish. The gut is an important channel for fish to communicate with the outside world and a necessary pathway for the metabolism of nutrients and toxic substances in the fish body. Studies have shown that due to changes in global water emissions and the high sensitivity of aquatic organisms to the environment, copper may pose greater potential hazards to aquatic organisms. Copper poses a greater risk to aquatic species than other heavy metals and metal/metal like pollutants (such as cadmium, lead, mercury, arsenic, etc.) . In order to elucidate the effects of copper exposure on the gut of T. rubripes. In this study, we exposed T. rubripes to 0, 50, 100, or 500 µg/L of copper for three days, the effects of copper exposure on the gut microbiota structure and metabolites of the T. rubripes were investigated using 16 S rRNA gene and metabolomics techniques. The research results indicate that with the increase copper concentration, the intestinal tissue of T. rubripes undergoes significant damage. 16 S rRNA sequencing results show that copper exposure alters the structure and metabolites of intestinal microbiota. Copper exposure of 100 and 500 µg/L inhibited the colonization of the bacterial gut, disrupted the intestinal barrier, and made the fish susceptible to the pathogens. Liquid chromatography-mass spectrometry analysis showed that copper regulated the production of metabolites such as L-histidine, arachidonic acid, and L-glutamic acid, which are related to energy and immunity. Microbiome-metabolome correlation analysis showed that Subdoligranulum, Family_XIII_AD3011_group, and Clostridium_sensu_stricto_1 were the key bacteria for copper ion intervention, and they might up-regulate the levels of metabolites such as indole-3-acetic acid, 3-indoleacrylic acid, and 5-hydroxyindole in the tryptophan metabolism pathway. In summary, our research has demonstrated that copper exposure can cause pathological changes in the intestinal tissue of the T. rubripes. High concentrations of copper ions can affect the colonization of the T. rubripes microbiota in the intestine, damage the fish's immune system, and alter the structure and metabolites of the intestinal microbiota, this can lead to intestinal metabolic dysfunction. providing a reference for the evaluation of the biological toxicity effects of heavy metal elements in the marine environment. This study provides a reference for evaluating the biological toxicity effects of heavy metal elements in marine environments.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Takifugu/metabolismo , Cobre/metabolismo , Bactérias , Água/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338790

RESUMO

Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.


Assuntos
Fibras Musculares Esqueléticas , Doenças Musculares , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Homeostase
5.
Fish Shellfish Immunol ; 139: 108918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364660

RESUMO

Interleukin 8 (IL8) is a CXC chemokine that plays a crucial role on promoting inflammatory response and immune regulation. In teleost, IL8 can induce the migration and activation of immune cells. However, the biological functions of IL8 are still unknown in Takifugu rubripes. In this study, we examined the biological characteristics of TrIL8 in T. rubripes. TrIL8 is composed of 98 residues and contained a chemokine CXC domain. We found that the TrIL8 expression was detected in diverse organs and significantly increased by Vibrio harveyi or Edwardsiella tarda challenge. The recombinant TrIL8 (rTrIL8) exhibited significantly the binding capacities to 8 tested bacteria. In addition, rTrIL8 could bind to peripheral blood leukocytes (PBL), and increased the expression of immune gene, resistance to bacterial infection, respiratory burst, acid phosphatase activity, chemotactic activity, and phagocytic activity of PBL. In the presence of rTrIL8, T. rubripes was enhanced the resistance to V. harveyi infection. These results indicated that TrIL8 is a chemokine and involved in the activation of immune cells against bacterial infection in teleost.


Assuntos
Infecções Bacterianas , Takifugu , Animais , Interleucina-8 , Sequência de Aminoácidos , Proteínas de Peixes/química , Leucócitos , Fatores Imunológicos/metabolismo , Quimiocinas/metabolismo , Antibacterianos/metabolismo
6.
Biosci Biotechnol Biochem ; 87(10): 1155-1168, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458754

RESUMO

Efficient enrichment of tetrodotoxin (TTX)-binding proteins from the plasma of cultured tiger pufferfish (Takifugu rubripes) was achieved by ammonium sulfate fractionation and wheat germ agglutinin (WGA) affinity chromatography. The enrichment efficiency was validated by ultrafiltration-LC/MS-based TTX-binding assay and proteomics. Major proteins in the WGA-bound fraction were identified as isoform X1 (125 kDa) and X2 variants (88 and 79 kDa) derived from pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) 1-like gene (LOC101075943). The 125-kDa X1 protein was found to be a novel member of the lipocalin family, having three tandemly repeated domains. X2 variants, X2α and X2ß, were estimated to have two domains, and X2ß is structurally related to Takifugu pardalis PSTBP2 in their domain type and arrangement. Among 11 potential N-glycosylation sites in the X2 precursor, 5 N-glycosylated Asn residues (N55, N89, N244, N308, and N449) were empirically determined. Structural relationships among PSTBP homologs and complexity of their proteoforms are discussed.


Assuntos
Proteômica , Takifugu , Animais , Takifugu/genética , Tetrodotoxina/metabolismo , Cromatografia de Afinidade
7.
J Fish Biol ; 102(2): 380-394, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371656

RESUMO

The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.


Assuntos
Opsinas , Takifugu , Animais , Opsinas de Bastonetes , Retina , Epitélio
8.
Ecotoxicol Environ Saf ; 244: 114050, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063614

RESUMO

Exposure to ammonia can cause convulsions, coma, and death. In this study, we investigate the effects of ammonia exposure on immunoregulatory and neuroendocrine changes in Takifugu rubripes. Fish were sampled at 0, 12, 24, 48, and 96 h following exposure to different ammonia concentrations (0, 5, 50, 100, and 150 mg/L). Our results showed that exposure to ammonia significantly reduced the concentrations of C3, C4, IgM, and LZM whereas the heat shock protein 70 and 90 levels significantly increased. In addition, the transcription levels of Mn-SOD, CAT, GRx, and GR in the liver were significantly upregulated following exposure to low ammonia concertation, however, downregulated with increased exposure time. These findings suggest that ammonia poisoning causes oxidative damage and suppresses plasma immunity. Ammonia exposure also resulted in the elevation and depletion of the T3 and T4 levels, respectively. Furthermore, ammonia stress induced an increase in the corticotrophin-releasing hormone, adrenocorticotropic hormone, and cortisol levels, and a decrease in dopamine, noradrenaline, and 5-hydroxytryptamine levels in the brain, illustrating that ammonia poisoning can disrupt the endocrine and neurotransmitter systems. Our results provide insights into the mechanisms underlying the neurotoxic effects of ammonia exposure, which helps to assess the ecological and environmental health risks of this contaminant in marine fish.


Assuntos
Amônia , Takifugu , Hormônio Adrenocorticotrópico/metabolismo , Amônia/metabolismo , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hidrocortisona/metabolismo , Imunidade , Imunoglobulina M/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Superóxido Dismutase/metabolismo , Takifugu/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
9.
Aggress Behav ; 48(2): 197-204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904727

RESUMO

Severe aggressive behavior of juvenile pufferfish affects economic efficiency and fish welfare in aquaculture. 5-HT plays an important role in regulating the aggressive behavior of fish in aquaculture environment. This study examined the effects of different concentrations (0, 0.25, 0.5, 1 mg/kg) of 8-OH-DPAT, a selective 5-HT1A receptor agonist, on the aggressive behavior of juvenile pufferfish. Forty-five minutes after drug injection, the aggressive behavior of juvenile fish was recorded for 20 min, including the latency to the first attack and the frequency of aggressive behaviors. The results showed no significant differences in the latency to the first attack of juvenile fish among treatment groups. During the first 10 min of the observation period, there was no significant difference in the total aggressive acts and locomotor activity among treatment groups. Total aggressive acts and locomotor activity were the least in the 1 mg/kg 8-OH-DPAT-treated during the 20 min observation period. Both aggressive behavior and locomotor activity were negatively correlated with 8-OH-DPAT treatment overall, respectively. The above results suggested that the serotonergic system activation had suppressive effects on aggressive behavior and locomotor activity in juvenile pufferfish.


Assuntos
Receptor 5-HT1A de Serotonina , Takifugu , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Agressão/fisiologia , Animais , Humanos , Agonistas do Receptor de Serotonina/farmacologia
10.
Fish Physiol Biochem ; 48(5): 1167-1181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35941472

RESUMO

Tiger pufferfish (Takifugu rubripes) is one of Asia's most economically valuable aquaculture species. However, winter production of this species in North China is limited by low water temperature and unavailability of high-quality feed, resulting in high mortality and low profitability. Therefore, the aim of this study was to evaluate the effect of feeding frequency (F1: one daily meal; F2: two daily meals; F3: four daily meals; F4: continuous diurnal feeding using a belt feeder) on the growth performance, plasma biochemistry, digestive and antioxidant enzyme activities, and expression of appetite-related genes in T. rubripes (initial weight: 266.80 ± 12.32 g) cultured during winter (18.0 ± 1.0 °C) for 60 days. The results showed that fish in the F3 group had the highest final weight, weight gain rate, specific growth rate, survival rate, and best feed conversion ratio. Additionally, daily feed intake increased significantly with increasing feeding frequency. The protein efficiency and lipid efficiency ratios of fish in the F3 group were significantly higher than those of fish in the other groups. Furthermore, total cholesterol, triglycerides, and glucose levels increased with increasing feeding frequency, peaking in the F2 group and decreasing under higher feeding frequencies. The antioxidant (superoxide dismutase, catalase, glutathione, and glutathione peroxidase) and digestive (trypsin, amylase, and lipase) enzyme activities of fish in the F1 group were significantly higher than those of fish in the F3 and F4 groups. Additionally, there was a decrease in orexin expression with increasing feeding frequency. In contrast, the expression levels of tachykinin, cholecystokinin, and leptin increased with increasing feeding frequency, peaking in the F4 group. Overall, the findings of this study indicated that a feeding frequency of four meals per day was optimal for improved growth performance of pufferfish juveniles cultured during winter.


Assuntos
Antioxidantes , Takifugu , Animais , Takifugu/metabolismo , Catalase/genética , Catalase/metabolismo , Antioxidantes/metabolismo , Leptina/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Apetite , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Tripsina/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Peixes/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Glutationa/metabolismo , Colecistocinina , Amilases/metabolismo , Lipase/metabolismo , Água/metabolismo , Glucose/metabolismo , Lipídeos/farmacologia
11.
BMC Genomics ; 22(1): 851, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819041

RESUMO

BACKGROUND: As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17ß (E2) -induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. RESULTS: In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshß, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. CONCLUSION: A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes.


Assuntos
Feminização , Takifugu , Animais , Encéfalo , Feminino , Humanos , Masculino , Diferenciação Sexual , Takifugu/genética , Transcriptoma
12.
Fish Shellfish Immunol ; 119: 645-650, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34758395

RESUMO

Genetic parameters of three antioxidant factors, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), were evaluated in liver samples from 840 Takifugu rubripes individuals from 28 full-sib families. Heritability values of SOD, CAT, and GPX were 0.17, 0.18, and 0.14, respectively, and the full-sib family effect values for these antioxidant factors were 0.46, 0.47, and 0.49, respectively. The ranges of phenotypic and genetic correlations among the three immune factors were 0.748-0.848 and 0.726-0.806, respectively. Considering the low heritability and high full-sib family effect of the three antioxidant indexes, the use of both genome-wide selection and clustered regularly interspaced short palindromic repeats (CRISPR) is promising for genetically improving the three antioxidant indexes in cultured fish. In addition, given positive phenotypic and genetic correlations among the three antioxidant enzymes SOD, CAT and GPX, the antioxidant competence of Takifugu rubripes can be improved by genetically improving these three antioxidant traits via multi-trait integrated breeding technology or indirect selection.


Assuntos
Antioxidantes , Takifugu , Animais , Catalase/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Takifugu/genética
13.
Biosci Biotechnol Biochem ; 85(5): 1088-1096, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686406

RESUMO

In this study, we isolated and characterized HSP70 cDNA from pufferfish (Takifugu rubripes). The 3053 bp full-length TrHSP70 sequence consisted of a 167 bp 5'-UTR (untranslated region), a 2535 bp open reading frame, and a 351 bp 3'-UTR. BLAST analysis revealed that the TrHSP70 shared high similarity with HSP70 sequences in other species. In our study, we set 3 experimental groups as H1 group (20 °C), H2 group (24 °C), and H3 group (28 °C) for checking the expression level of TrHSP70 in T. rubripes. Tissue-specific gene expression results showed that TrHSP70 had higher expression in the intestines than other tissues of the T. rubripes by RT-qPCR. In the experimental group, we found that the expression of TrHSP70 was upregulated in different tissues in the H3 group. The results show that TrHSP70 is a constitutively expressed gene, which plays an important role in maintaining normal physiological function and coping with stress.


Assuntos
Proteínas de Peixes/genética , Proteínas de Choque Térmico HSP70/genética , Estresse Fisiológico/genética , Takifugu/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Cricetinae , Cães , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Brânquias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Músculos/metabolismo , Fases de Leitura Aberta , Filogenia , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Takifugu/classificação , Takifugu/metabolismo , Regiões não Traduzidas
14.
J Fish Dis ; 44(3): 249-262, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33314157

RESUMO

Takifugu rubripes and Dicentrarchus labrax are important commercial fish in China that are under serious threat from Cryptocaryon irritans. C. irritans is a ciliated obligate parasite that causes marine white spot disease and leads to heavy economic losses. We analysed the transcriptome in the gills of T. rubripes and D. labrax to compare differentially expressed genes (DEGs) and pathways during infection with C. irritans. In total, we identified 6,901 and 35,736 DEGs from T. rubripes and D. labrax, respectively. All DEGs were annotated into GO terms; 6,901 DEGs from T. rubripes were assigned into 991 sub-categories, and 35,736 DEGs from D. labrax were assigned into 8,517 sub-categories. We mapped DEGs to the KEGG database and obtained 153 and 350 KEGG signalling pathways from T. rubripes and D. labrax, respectively. Immune-related categories included Toll-like receptors, MAPK, lysosome, C-type lectin receptor and NOD-like receptor signalling pathways were significantly enriched pathways. In immune-related signalling pathways, we found that AP-1, P38, IL-1ß, HSP90 and PLA were significantly up-regulated DEGs in T. rubripes, but P38 and PLA were significantly down-regulated in D. labrax. In this study, transcriptome was used to analyse the difference between scaly and non-scaly fish infection by C. irritans, which not only provided a theoretical basis for the infection mechanism of C. irritans, but also laid a foundation for effectively inhibiting the occurrence of this disease. Our work provides further insight into the immune response of host resistance to C. irritans.


Assuntos
Infecções por Cilióforos/veterinária , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Animais , Bass , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Brânquias/imunologia , Brânquias/parasitologia , Hymenostomatida/fisiologia , Transdução de Sinais , Takifugu
15.
Fish Physiol Biochem ; 47(5): 1669-1685, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34460041

RESUMO

Hypoxia in water that caused by reduced levels of oxygen occurred frequently, due to the complex aquatic environment. Hypoxia tolerance for fish depends on a complete set of coping mechanisms such as oxygen perception and gene-protein interaction regulation. The present study examined the short-term effects of hypoxia on the brain in Takifugu rubripes. We sequenced the transcriptomes of the brain in T. rubripes to study their response mechanism to acute hypoxia. A total of 167 genes were differentially expressed in the brain of T. rubripes after exposed to acute hypoxia. Gene ontology and KEGG enrichment analysis indicated that hypoxia could cause metabolic and neurological changes, showing the clues of their adaptation to acute hypoxia. As the most complex and important organ, the brain of T. rubripes might be able to create a self-protection mechanism to resist or reduce damage caused by acute hypoxia stress.


Assuntos
Takifugu , Transcriptoma , Animais , Encéfalo , Hipóxia/genética , Oxigênio , Takifugu/genética
16.
Fish Physiol Biochem ; 47(6): 1983-1993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674076

RESUMO

Aggressive behavior is important for animals to obtain limited resources. Understanding fish behavior and physiological response is of great significance to evaluate aquaculture production and fish welfare. Food is an important trigger of aggressive behavior in juvenile fish under high-density aquaculture conditions. The aim of this study was to investigate the aggressive behavior and monoamine levels of juvenile pufferfish (mean body mass of 6.29 ± 0.33 g) under normal feeding and restricted feeding. Our main results included the following: (1) The mortality and fin damage were higher and aggression was more intense of juvenile pufferfish at the 1% ration than those of the 3% ration; (2) during feeding, the velocity, body contact, and activity at the 1% ration were significantly higher than that of the 3% ration; (3) the concentrations of brain 5-hydroxyindoleacetic acid (5-HIAA) and monoamine oxidase A (MAOA) at the 1% ration were significantly lower, and dopamine (DA) concentrations were significantly higher. These results suggest that juvenile pufferfish shows serious aggressive behavior at the low ration, which may be related to the decrease of 5-HIAA and MAOA concentrations, and the increase of DA concentrations.


Assuntos
Agressão , Monoaminas Biogênicas/análise , Dieta/veterinária , Takifugu , Animais , Encéfalo , Dopamina , Ácido Hidroxi-Indolacético , Monoaminoxidase
17.
Fish Physiol Biochem ; 47(6): 1739-1758, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34482494

RESUMO

The present study was aimed at screening suitable reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) in tiger puffer (Takifugu rubripes), an important aquaculture species in Asia and also a good model species for lipid research. Specifically, this reference gene screening was targeted at standardization of gene expression in different tissues (liver, muscle, brain, intestine, heart, eye, skin, and spleen) or under different nutritional conditions (starvation and different dietary lipid levels). Eight candidate reference genes (ribosomal protein L19 and L13 (RPL19 and RPL13), elongation factor-1 alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine guanine phosphoribosyl transferase1 (HPRT1), beta-2-Microglobulin (B2M), 18S ribosomal RNA (18SrRNA), and beta actin (ACTB)) were evaluated with four algorithms (geNorm, NormFinder, BestKeeper, and comparative ΔCt method). The results showed that different algorithms generated inconsistent results. Based on these findings, RPL19, EF1α, 18SrRNA, and RPL13 were relatively stable in different tissues of tiger puffer. During starvation conditions, ACTB/RPL19 was the best reference gene combination. Under different dietary lipid levels, ACTB/RPL13 was the most suitable reference gene combination. The present results will help researchers to obtain more accurate results in future qRT-PCR analysis in tiger puffer.


Assuntos
Proteínas de Peixes/genética , Estado Nutricional , Takifugu , Actinas/genética , Animais , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Ribossômicas/genética , Takifugu/genética
18.
Br J Nutr ; 123(12): 1345-1356, 2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31959268

RESUMO

Taurine (TAU) plays important roles in the metabolism of bile acids, cholesterol and lipids. However, little relevant information has been available in fish where TAU has been identified as a conditionally essential nutrient. The present study aimed to investigate the effects of dietary TAU on the metabolism of bile acids, cholesterol and lipids in tiger puffer, which is both an important aquaculture species and a good research model, having a unique lipid storage pattern. An 8-week feeding trial was conducted in a flow-through seawater system. Three experimental diets differed only in TAU level, that is, 1·7, 8·2 and 14·0 mg/kg. TAU supplementation increased the total bile acid content in liver but decreased the content in serum. TAU supplementation also increased the contents of total cholesterol and HDL-cholesterol in both liver and serum. The hepatic bile acid profile mainly includes taurocholic acid (94·48 %), taurochenodeoxycholic acid (4·17 %) and taurodeoxycholic acid (1·35 %), and the contents of all these conjugated bile acids were increased by dietary TAU. The hepatic lipidomics analysis showed that TAU tended to decrease the abundance of individual phospholipids and increase those of some individual TAG and ceramides. The hepatic mRNA expression study showed that TAU stimulated the biosynthesis of both bile acids and cholesterol, possibly via regulation of farnesoid X receptor and HDL metabolism. TAU also stimulated the hepatic expression of lipogenic genes. In conclusion, dietary TAU stimulated the hepatic biosynthesis of both bile acids and cholesterol and tended to regulate lipid metabolism in multiple ways.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Fígado/efeitos dos fármacos , Takifugu/metabolismo , Taurina/farmacologia , Ração Animal/análise , Animais , Suplementos Nutricionais
19.
Fish Shellfish Immunol ; 104: 213-221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32534232

RESUMO

Cryptocaryon irritans can cause cryptocaryonosis (white spot disease) in marine fish but the pathogenesis of the disease is unclear. In this work, we used high-throughput proteomics to identify differentially expressed proteins in the serum of Takifugu rubripes challenged with C. irritans. By using quantitative proteomic assays combined with Tandem Mass Tag-labeled quantitative proteomic analysis, we identified a total of 2088 differentially abundant proteins (1706 proteins were quantified, p < 0.05, fold-change threshold ≥ 2), including 21 up-regulated and 44 down-regulated. Combined with STRING-based functional analysis, we ultimately obtained eight proteins including glucokinase-like, integrin beta-1-like isoform X2, H4, H2A.V, histone H1-like, histone H2AX-like, histone H2B 1/2-like and myosin-9 isoform X1, which could be considered as potential biomarkers for T. rubripes immune responses. Eight proteins that were selected to validate significant differentially expressed genes at the proteomic level were consistent with qPCR at the transcriptomic level. The proteins identified in our work may serve as candidates for elucidating the molecular mechanism of cryptocaryonosis in T. rubripes. Our collective findings could provide new insights into searching for disease-specific targets and biomarkers, which may be effective indicators of C. irritans infection in T. rubripes.


Assuntos
Infecções por Cilióforos/sangue , Cilióforos , Doenças dos Peixes/sangue , Proteínas de Peixes/administração & dosagem , Takifugu/sangue , Animais , Infecções por Cilióforos/veterinária , Proteínas de Peixes/sangue , Proteômica , Takifugu/microbiologia
20.
Fish Shellfish Immunol ; 103: 143-149, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32437858

RESUMO

In mammals, interleukin (IL)-17A and IL-17F, mainly produced by Th17 cells, are hallmark inflammatory cytokines that play important roles in the intestinal mucosal immune response. In contrast, three mammalian IL-17A and IL-17F counterparts (IL-17A/F1-3) have been identified in teleosts, and most of their functions have been described in the lymphoid organs. However, their function in the intestinal mucosal immune response is poorly understood. In this study, a recombinant (r) tiger puffer fish fugu (Takifugu rubripes) IL-17A/F1 was produced and purified using a mammalian expression system, and was used to stimulate cells isolated from fugu head kidney and intestines. The gene expression levels of TNF-α, IL-1ß, IL-6, and ß-defensin-like protein-1 (BD-1) genes were evaluated at 0, 3, 6 and 12 h post-stimulation (hps). Phagocytic activity and superoxide anion production were evaluated at the same time points using an NBT assay. The rIL-17A/F1 protein was shown to induce the expression of pro-inflammatory cytokines and antimicrobial peptides in both head kidney and intestinal cells. Expression levels for IL-1ß, TNF-α, and IL-6 were all up-regulated between 3 and 12 hps. In addition, stimulation with rIL-17A/F1 enhanced phagocytic activity at 24 hps. Superoxide anion production was increased at 48 hps in the head kidney cells and moderately increased at 48 hps in intestinal cells. This study suggests that fugu IL-17A/F1 plays an important role in promoting the innate immune response and may act as a bridge between innate and adaptive immunity in the head kidney and intestine.


Assuntos
Proteínas de Peixes/imunologia , Expressão Gênica/imunologia , Imunidade Inata/genética , Interleucina-17/imunologia , Takifugu/imunologia , Animais , Citocinas/metabolismo , Proteínas de Peixes/genética , Rim Cefálico/imunologia , Interleucina-17/genética , Intestinos/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Superóxidos/imunologia , Takifugu/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA