RESUMO
BACKGROUND: Excessively active pulmonary inflammation is a hallmark of sepsis-induced lung damage. A synthetic retinoid drug called tamibarotene reduces inflammation in a variety of conditions, including acute promyelocytic leukemia (APL), renal fibrosis, and neuroinflammation. Its effect on sepsis-related lung injury, however, has not been explained. PURPOSE: The purpose of the study was to investigate how tamibarotene affected lung damage induced by cecal ligation and puncture (CLP) procedure. METHODS: A CLP sepsis mouse model was developed, and tamibarotene was pretreated to determine whether it improved lung injury and survival. The degree of lung injury was evaluated using the Hematoxylin and eosin staining and lung injury score. In order to determine pulmonary vascular permeability, measurements were taken for total protein and cell content of bronchoalveolar lavage fluid (BALF), wet/dry ratio of the lung, and Evans blue stain. The BALF inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-17A were discovered by enzyme-linked immunosorbent serologic assay (ELISA). Then, the levels of heparin-binding protein (HBP), and phospho-nuclear factor kappa-B (p-NF-κB) P65, and NF-κB P65 were determined using ELISA and Western blot analysis, respectively. RESULTS: Tamibarotene considerably increases survival and lessens lung damage stimulated by sepsis. Specifically, tamibarotene significantly relieves pulmonary vascular permeability and inhibits inflammation response in sepsis. Moreover, we further confirmed that these ameliorating effects of tamibarotene on sepsis may be exerted by targeting HBP and regulating the activation of NF-κB signaling pathway. CONCLUSION: These findings demonstrated that tamibarotene lessens sepsis-induced lung injury, and the effect could be exerted by targeting HBP and thereby deregulating the NF-κB signaling pathway.
Assuntos
Lesão Pulmonar , Sepse , Camundongos , Animais , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , NF-kappa B/metabolismo , Pulmão/patologia , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/patologia , Sepse/tratamento farmacológico , Sepse/metabolismoRESUMO
BACKGROUND: Cancer-associated fibroblasts (CAFs) are an important component of the tumour microenvironment. Recent studies revealed CAFs are heterogeneous and CAF subset(s) that suppress cancer progression (cancer-restraining CAFs [rCAFs]) must exist in addition to well-characterised cancer-promoting CAFs (pCAFs). However, the identity and specific markers of rCAFs are not yet reported. We recently identified Meflin as a specific marker of rCAFs in pancreatic and colon cancers. Our studies revealed that rCAFs may represent proliferating resident fibroblasts. Interestingly, a lineage tracing experiment showed Meflin-positive rCAFs differentiate into α-smooth muscle actin-positive and Meflin-negative CAFs, which are generally hypothesised as pCAFs, during cancer progression. Using a pharmacological approach, we identified AM80, a synthetic unnatural retinoid, as a reagent that effectively converts Meflin-negative pCAFs to Meflin-positive rCAFs. We aimed to investigate the efficacy of a combination of AM80 and gemcitabine (GEM) and nab-paclitaxel (nab-PTX) in patients with advanced pancreatic cancer. METHODS: The phase I part is a 3 + 3 design, open-label, and dose-finding study. The dose-limiting toxicity (DLT) of these combination therapies would be evaluated for 4 weeks. After the DLT evaluation period, if no disease progression is noted based on the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 or if the patient has no intolerable toxicity, administration of AM80 with GEM and nab-PTX would be continued for up to 24 weeks. The phase II part is an open-label, single-arm study. The maximum tolerated dose (MTD) of AM80 with GEM and nab-PTX, determined in phase I, would be administered until intolerable toxicity or disease progression occurs, up to a maximum of 24 weeks, to confirm efficacy and safety. The primary endpoints are frequency of DLT and MTD of AM80 with GEM and nab-PTX in the phase I part and response rate based on the RECIST in the phase II part. Given the historical control data, we hope that the response rate will be over 23% in phase II. DISCUSSION: Strategies to convert pCAFs into rCAFs have been developed in recent years. We hypothesised that AM80 would be a promising enhancer of chemosensitivity and drug distribution through CAF conversion in the stroma. TRIAL REGISTRATION: Clinicaltrial.gov: NCT05064618 , registered on 1 October 2021. jRCT: jRCT2041210056 , registered on 27 August 2021.
Assuntos
Albuminas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzoatos/administração & dosagem , Desoxicitidina/análogos & derivados , Reposicionamento de Medicamentos/métodos , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Tetra-Hidronaftalenos/administração & dosagem , Adulto , Idoso , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Desoxicitidina/administração & dosagem , Feminino , Humanos , Imunoglobulinas/efeitos dos fármacos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Células Estromais/efeitos dos fármacos , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Adulto Jovem , GencitabinaRESUMO
Prostate cancer (PC) is the second most common tumor in males. The search for appropriate therapeutic options against advanced PC has been in process for several decades. Especially after cessation of the effectiveness of hormonal therapy (i.e., emergence of castration-resistant PC), PC management options have become scarce and the prognosis is poor. To overcome this stage of disease, an array of natural and synthetic substances underwent investigation. An interesting and promising class of compounds constitutes the derivatives of natural retinoids. Synthesized on the basis of the structure of retinoic acid, they present unique and remarkable properties that warrant their investigation as antitumor drugs. However, there is no up-to-date compilation that consecutively summarizes the current state of knowledge about synthetic retinoids with regard to PC. Therefore, in this review, we present the results of the experimental studies on synthetic retinoids conducted within the last decade. Our primary aim is to highlight the molecular targets of these compounds and to identify their potential promise in the treatment of PC.
Assuntos
Antineoplásicos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata , Receptores do Ácido Retinoico/metabolismo , Retinoides , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Retinoides/síntese química , Retinoides/química , Retinoides/uso terapêuticoRESUMO
GOAL: The present study aimed to examine whether Am80 (tamibarotene) protects the hippocampus against cerebral ischemia-reperfusion (I/R) injury and whether phosphoinositide-3-kinase/Akt (PI3K/Akt) pathway mediates this effect. MATERIALS AND METHODS: Rats were subjected to 90 minutes of middle cerebral artery occlusion followed by 24 hours of reperfusion. The animals were randomly divided into 7 groups: sham-operated group; I/R group; groups pretreated with 2 mg/kg, 6 mg/kg, and 10 mg/kg of Am80; Am80 (6 mg/kg) combined with the selective PI3K inhibitor wortmannin (0.6 mg/kg), and wortmannin (0.6 mg/kg) only group. After 24 hours of reperfusion, neurological deficits and infarct volume were measured. Pathological changes in hippocampal neurons were analyzed by transmission electron microscopy. Neuronal survival was examined by TUNEL staining. The expression of Bcl-2, Bax, and Akt, and Akt phosphorylation (p-Akt) were measured by Western blotting and quantitative real-time polymerase chain reaction. FINDINGS: The pretreatment with Am80 improved the neurologic deficit score, reduced infarct volume, and decreased the number of TUNEL-positive cells in the hippocampus. Moreover, Am80 pretreatment downregulated the expression of Bax, upregulated the expression of Bcl-2, and increased the level of p-Akt. Wortmannin abolished in part the increase in p-Act and the neuroprotective effect exerted on the ischemic by Am80 pretreatment. CONCLUSIONS: Our results documented that Am80 pretreatment protects ischemic hippocampus after cerebral I/R by regulating the expression of apoptosis-related proteins through the activation of the PI3K/Akt signaling pathway.
Assuntos
Benzoatos/farmacologia , Hipocampo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Tetra-Hidronaftalenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/enzimologia , Hipocampo/ultraestrutura , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/enzimologia , Neurônios/ultraestrutura , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismoRESUMO
Tamibarotene (Am80) has good curative effect on advanced hepatocellular carcinoma (HCC). To improve the therapeutic efficacy furtherly, we prepared tamibarotene-loaded PLGA microspheres (Am80-PLGA-MS) for intratumoral injection. Firstly, Am80-PLGA-MS were prepared by emulsion-solvent evaporation method. Subsequently, microspheres were characterized by particle size analysis, drug loading (DL), and entrapment efficiency (EE). Finally, the drug release characteristics in vitro, pharmacokinetic, and pharmacodynamics were studied separately. According to results obtained, microspheres were spherical with a uniform particle size 7.04 ± 0.03 µm and its EE and DL were 82.23 ± 0.74 and 11.74 ± 0.11%, respectively. In vitro, Am80-PLGA-MS can release drug for 14 days and its release behavior was fitted with the Higuchi equation. In pharmacokinetic studies, the t1/2ß, MRT, and AUC of microspheres were 15.43-fold, 8.62-fold, and 9.98-fold those of Am80 solution, respectively, which revealed that the utilization of drug was improved obviously. The pharmacodynamics studies showed that the tumor doubling time, growth inhibition rate, and specific growth rate of tumor of Am80-PLGA-MS were 1.34 times, 2.63 times, and 0.72 times those of drug solution, respectively, indicating that the inhibitory effect on tumor by the microspheres was significantly improved. In summary, Am80-PLGA-MS are promising carrier to enhance the inhibitory effect on tumor, which will provide significantly clinical value for treatment of HCC.
Assuntos
Antineoplásicos/uso terapêutico , Benzoatos/uso terapêutico , Ácido Láctico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Ácido Poliglicólico , Tetra-Hidronaftalenos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Benzoatos/administração & dosagem , Benzoatos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Injeções Intralesionais , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tetra-Hidronaftalenos/administração & dosagem , Tetra-Hidronaftalenos/farmacocinéticaRESUMO
Acute promyelocytic leukemia (APL) with PML-RARA is an acute myeloid leukemia (AML) with a predominance of abnormal promyelocytes. Both hypergranular (typical) and microgranular (hypogranular) types exist. Previously, APL was associated with an extremely high mortality rate due to hemorrhage. However, since the advent of anthracycline, all-trans retinoic acid (ATRA) has been introduced into therapy, resulting in the transformation of APL into AML with a higher probability of cure. Furthermore, for the last 30 years, molecular-targeted drugs, such as arsenic acid (ATO), tamibarotene (Am80), and gemtuzumab ozogamicin (GO), have been developed in succession in addition to ATRA. In recent years, molecular-targeted drugs with different mechanisms of action are being combined, and the APL treatment outcome is revolutionary. In this review, we introduce previously used APL therapies and those at the forefront of APL treatment.
Assuntos
Leucemia Promielocítica Aguda/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Trióxido de Arsênio/uso terapêutico , Benzoatos/uso terapêutico , Humanos , Terapia de Alvo Molecular , Tetra-Hidronaftalenos/uso terapêutico , Tretinoína/uso terapêuticoRESUMO
Treatment of acute promyelocytic leukaemia (APL) with arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) is highly effective first-line therapy, although approximately 5-10% of patients relapse. Tamibarotene is a synthetic retinoid with activity in APL patients who relapse after chemotherapy and ATRA, but has not been studied in relapse after treatment with ATO and ATRA. We report on a phase II study of tamibarotene in adult patients with relapsed or refractory APL after treatment with ATRA and ATO (n = 14). Participants were treated with tamibarotene (6 mg/m(2) /d) during induction and for up to six cycles of consolidation. The overall response rate was 64% (n = 9), the rate of complete cytogenetic response was 43% (n = 6) and the rate of complete molecular response was 21% (n = 3). Relapse was frequent with 7 of 9 responders relapsing after a median of 4·6 months (range 1·6-26·8 months). The median event-free survival (EFS) was 3·5 months [95% confidence interval (CI) 0-8·6 months] and the median overall survival (OS) was 9·5 months (95% CI 5·9-13·1 months). These results demonstrate that tamibarotene has activity in relapsed APL after treatment with ATO and ATRA and further studies using tamibarotene as initial therapy and in combination with ATO are warranted.
Assuntos
Antineoplásicos/uso terapêutico , Benzoatos/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Tetra-Hidronaftalenos/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Trióxido de Arsênio , Arsenicais/administração & dosagem , Arsenicais/uso terapêutico , Benzoatos/efeitos adversos , Biomarcadores Tumorais/sangue , Doenças Cardiovasculares/induzido quimicamente , Diferenciação Celular/efeitos dos fármacos , Terapia Combinada , Quimioterapia de Consolidação , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Neutropenia Febril/induzido quimicamente , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Estimativa de Kaplan-Meier , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/terapia , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/sangue , Óxidos/administração & dosagem , Óxidos/uso terapêutico , Recidiva , Indução de Remissão , Terapia de Salvação , Tetra-Hidronaftalenos/efeitos adversos , Tretinoína/administração & dosagem , Tretinoína/uso terapêuticoRESUMO
We previously demonstrated that a synthetic retinoic acid receptor agonist, Am80, attenuated intracerebral hemorrhage (ICH)-induced neuropathological changes and neurological dysfunction. Because inflammatory events are among the prominent features of ICH pathology that are affected by Am80, this study investigated the potential involvement of proinflammatory cytokines/chemokines in the effect of Am80 on ICH. ICH induced by collagenase injection into mouse striatum caused prominent upregulation of mRNAs for interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, CXCL1, CXCL2, and CCL3. We found that dexamethasone (DEX) and Am80 differently modulated the increase in expression of these cytokines/chemokines; TNF-α expression was attenuated only by DEX, whereas CXCL2 expression was attenuated only by Am80. Expression of IL-1ß and IL-6 was inhibited both by DEX and Am80. Neurological assessments revealed that Am80, but not DEX, significantly alleviated motor dysfunction of mice after ICH. From these results, we suspected that CXCL2 might be critically involved in determining the extent of motor dysfunction. Indeed, magnetic resonance imaging-based classification of ICH in individual mice revealed that invasion of hematoma into the internal capsule, which has been shown to cause severe neurological disabilities, was associated with higher levels of CXCL2 expression than ICH without internal capsule invasion. Moreover, a CXCR1/2 antagonist reparixin ameliorated neurological deficits after ICH. Overall, suppression of CXCL2 expression may contribute to the beneficial effect of Am80 as a therapeutic agent for ICH, and interruption of CXCL2 signaling may provide a promising target for ICH therapy.
Assuntos
Benzoatos/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Quimiocina CXCL2/metabolismo , Fármacos Neuroprotetores/farmacologia , Tetra-Hidronaftalenos/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Benzoatos/uso terapêutico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Quimiocina CXCL2/genética , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tetra-Hidronaftalenos/uso terapêuticoRESUMO
Inhibition of menin in acute myeloid leukemia (AML) harboring histone-lysine-N-methyltransferase 2A rearrangement (KMT2Ar) or the mutated Nucleophosmin gene (NPM1c) is considered a novel and effective treatment approach in these patients. However, rapid acquisition of resistance mutations can impair treatment success. In patients with elevated retinoic acid receptor alpha (RARA) expression levels, promising effects are demonstrated by the next-generation RARalpha agonist tamibarotene, which restores differentiation or induces apoptosis. In this study, the combination of revumenib and tamibarotene was investigated in various KMT2Ar or NPM1c AML cell lines and patient-derived blasts, focusing on the potential synergistic induction of differentiation or apoptosis. Both effects were analyzed by flow cytometry and validated by Western blot analysis. Synergy calculations were performed using viability assays. Regulation of the relevant key mediators for the MLL complex were quantified by RT-qPCR. In MV4:11 cells characterized by the highest relative mRNA levels of RARA, highly synergistic induction of apoptosis is demonstrated upon combination treatment. Induction of apoptosis by combined treatment of MV4:11 cells is accompanied by pronounced induction of the pro-apoptotic protein BAX and a synergistic reduction in CDK6 mRNA levels. In MOLM13 and OCI-AML3 cells, an increase in differentiation markers like PU.1 or a decreased ratio of phosphorylated to total CEBPA is demonstrated. In parts, corresponding effects were observed in patient-derived AML cells carrying either KMT2Ar or NPM1c. The impact of revumenib on KMT2Ar or NPM1c AML cells was significantly enhanced when combined with tamibarotene, demonstrating synergistic differentiation or apoptosis initiation. These findings propose promising strategies for relapsed/refractory AML patients with defined molecular characteristics.
RESUMO
Alzheimer's disease is a chronic, neurological condition that faces many challenges in its management and therapy nowadays highlighting the importance and urgent need of researching new ways of approaching this disease. Retinoic acid and its derivatives, collectively known as the retinoids, are considered promising agents that have disease-modifying properties in affecting Alzheimer's disease. This thesis aims to address the research questions of what the role of retinoids is in Alzheimer's disease, and whether they can be used as a novel drug candidate for treating this condition. Retinoids' properties and agonistic actions on the nuclear receptors retinoic acid receptor (RAR) and retinoic X receptor (RXR) affect various pathways as well as their underlying genetic factors that compose important pathophysiological hallmarks causing the progression of Alzheimer's disease as amyloid ß (Aß) production and deposition, neurofibrillary tangle (NFT) formation and phosphorylation, and inflammatory and autoimmune responses. Retinoic acid inhibits the amplification of these pathways and modifies the disease progression in animal models, proposing a solid basis for human trials. Hence, investigating retinoids as pharmacological agents in human trials has been conducted, and several synthetic analogues have been developed to address issues concerning retinoic acid's instability and short half-life, as well as adverse drug reactions. The most prominent of these analogues is tamibarotene, a stable retinoic acid derivative with a higher half-life, higher specificity to target receptors, and fewer adverse reactions. A number of criteria that explain what a novel drug candidate should have when managing Alzheimer's disease have been formulated, and which also explain why most novel drug candidates other than retinoic acid have failed in achieving clinical results. Most of these candidates share one common trait which is a single-target approach in targeting disease pathways. This means that when administering these agents, their actions are to target a single disease-causing pathway at a time but do not affect other pathways. On the other hand, tamibarotene is a novel drug candidate that targets a range of pathways at once and provides a more comprehensive approach in its pharmacological actions.
RESUMO
Tamibarotene-based therapy is a novel targeted approach for the treatment of relapsed/refractory (R/R) acute myeloid leukemia (AML) with retinoic acid receptor alpha (RARA) gene overexpression. Approximately, 50% of higher-risk myelodysplastic syndrome (MDS) patients and approximately 30% of AML patients are positive for RARA overexpression using a blood-based biomarker test that measures RARA expression in peripheral blasts. A phase 2 study investigating the activity of tamibarotene in patients with RARA overexpression was conducted in patients with AML and MDS (NCT02807558). In 28 patients with R/R AML and RARA overexpression treated with tamibarotene in combination with azacitidine, the median overall survival was 5.9 months. In 21 response-evaluable patients, the complete remission/complete remission with incomplete hematologic recovery (CR/CRi) rate was 19%, and median time to initial CR/CRi was 1.2 months. The favorable safety profile and preliminary clinical activity support the development of combination therapies with tamibarotene in myeloid malignancies with RARA overexpression.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Azacitidina/uso terapêutico , Síndromes Mielodisplásicas/genética , Receptor alfa de Ácido Retinoico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Peretinoin is an acyclic retinoid that stimulates retinoic acid receptors (NR1Bs) and produces therapeutic effects on hepatocellular cancer. We have previously shown that NR1B agonists such as Am80 and all trans-retinoic acid suppress pathogenic events in intracerebral hemorrhage. The present study addressed the actions of peretinoin and Am80 against cytotoxicity of a blood protease thrombin on cortico-striatal slice cultures obtained from neonatal rat brains. Application of 100 U/ml thrombin to the slice cultures for 72 h caused cell death in the cortical region and tissue shrinkage in the striatal region. Peretinoin (50 µM) and Am80 (1 µM) counteracted these cytotoxic effects of thrombin, and the effect of peretinoin and Am80 was blocked by LE540, an NR1B antagonist. A broad-spectrum kinase inhibitor K252a (3 µM) attenuated the cytoprotective effect of peretinoin in the cortical region, whereas a specific protein kinase A inhibitor KT5720 (1 µM) attenuated the protective effect of peretinoin in the cortical and the striatal regions. On the other hand, nuclear factor-κB (NF-κB) inhibitors such as pyrrolidine dithiocarbamate (50 µM) and Bay11-7082 (10 µM) prevented thrombin-induced shrinkage of the striatal region. Peretinoin and Am80 as well as Bay11-7082 blocked thrombin-induced nuclear translocation of NF-κB in striatal microglia and loss of striatal neurons. We also found that daily administration of peretinoin reduced histopathological injury and alleviated motor deficits in a mouse model of intracerebral hemorrhage. These results indicate that NR1B agonists including peretinoin may serve as a therapeutic option for hemorrhagic brain injury.
Assuntos
Antineoplásicos , Lesões Encefálicas , Ratos , Camundongos , Animais , Trombina/metabolismo , NF-kappa B/metabolismo , Encéfalo , Tretinoína/efeitos adversos , Lesões Encefálicas/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente , Antineoplásicos/farmacologiaRESUMO
Since the introduction of all-trans retinoic acid (ATRA), acute promyelocytic leukemia (APL) has become a highly curable malignancy, especially in combination with arsenic trioxide (ATO). ATRA's success has deepened our understanding of the role of the RARα pathway in normal hematopoiesis and leukemogenesis, and it has influenced a generation of cancer drug development. Retinoids have also demonstrated some efficacy in a handful of other disease entities, including as a maintenance therapy for neuroblastoma and in the treatment of cutaneous T-cell lymphomas; nevertheless, the promise of retinoids as a differentiating therapy in acute myeloid leukemia (AML) more broadly, and as a cancer preventative, have largely gone unfulfilled. Recent research into the mechanisms of ATRA resistance and the biomarkers of RARα pathway dysregulation in AML have reinvigorated efforts to successfully deploy retinoid therapy in a broader subset of myeloid malignancies. Recent studies have demonstrated that the bone marrow environment is highly protected from exogenous ATRA via local homeostasis controlled by stromal cells expressing CYP26, a key enzyme responsible for ATRA inactivation. Synthetic CYP26-resistant retinoids such as tamibarotene bypass this stromal protection and have shown superior anti-leukemic effects. Furthermore, recent super-enhancer (SE) analysis has identified a novel AML subgroup characterized by high expression of RARα through strong SE levels in the gene locus and increased sensitivity to tamibarotene. Combined with a hypomethylating agent, synthetic retinoids have shown synergistic anti-leukemic effects in non-APL AML preclinical models and are now being studied in phase II and III clinical trials.
RESUMO
Chronic obstructive pulmonary disease (COPD) results in obstructive ventilatory impairment caused by emphysema, and current treatment is limited to symptomatic therapy or lung transplantation. Therefore, the development of new treatments to repair alveolar destruction is especially urgent. Our previous study revealed that 1.0 mg/kg of synthetic retinoid Am80 had a repair effect on collapsed alveoli in a mouse model of elastase-induced emphysema. From these results, however, the clinical dose calculated in accordance with FDA guidance is estimated to be 5.0 mg/60 kg, and it is desirable to further reduce the dose to allow the formulation of a powder inhaler for clinical application. To efficiently deliver Am80 to the retinoic acid receptor in the cell nucleus, which is the site of action, we focused on SS-cleavable proton-activated lipid-like material O-Phentyl-P4C2COATSOME®SS-OP, hereinafter referred to as "SS-OP"). In this study, we investigated the cellular uptake and intracellular drug delivery process of Am80-encapsulated SS-OP nanoparticles to elucidate the mechanism of Am80 by nanoparticulation. Am80-encapsulated SS-OP nanoparticles were taken up into the cells via ApoE, and then Am80 was efficiently delivered into the nucleus via RARα. These results indicated the usefulness of SS-OP nanoparticles as drug delivery system carriers of Am80 for COPD treatment.
RESUMO
Tamibarotene-loaded biodegradable matrices with antithrombogenic and drug-releasing properties were prepared in a crosslinking reaction between amino groups of alkali-treated collagen (AlCol) and active ester groups of trisuccinimidyl citrate. The resulting matrices were characterized by their residual amino group concentrations, swelling ratios and thermal, antithrombogenic and drug-releasing properties. It was clarified that the addition of tamibarotene does not inhibit matrix formation. After immersion in water, the swelling ratio of a matrix became lower than that prior to immersion. Thermal analysis indicated that AlCol interacted with tamibarotene. The addition of tamibarotene to the matrix did not influence the antithrombogenic property of the resulting matrix. A matrix with a high crosslinking density had a prolonged tamibarotene elution time. These results demonstrate that tamibarotene-loaded matrices have great potential as a coating material for drug-eluting stents.
RESUMO
BACKGROUND AND PURPOSE: Subarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high rates of mortality. In the early stages of SAH, neuroinflammation is one of the important mechanisms leading to brain injury after SAH. In various central nervous system diseases, activation of RARα receptor has been proven to demonstrate neuroprotective effects. This study aimed to investigate the anti-inflammatory effects of RARα receptor activation after SAH. METHODS: Internal carotid artery puncture method used to established SAH model in Sprague-Dawley rats. The RARα specific agonist Am80 was injected intraperitoneally 1 hour after SAH. AGN196996 (specific RARα inhibitor), Msr1 siRNA and LY294002 (PI3K-Akt inhibitor) were administered via the lateral ventricle before SAH. Evaluation SAH grade, neurological function score, blood-brain barrier permeability. BV2 cells and SH-SY5Y cells were co-cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. RT-PCR, Western blotting, and immunofluorescence staining were used to investigate pathway-related proteins, microglia activation and inflammatory response. Results: The expression of RARα, Mafb, and Msr1 increased in rat brain tissue after SAH. Activation of the RARα receptor with Am80 improved neurological deficits and attenuated brain edema, blood brain barrier permeability. Am80 increased the expression of Mafb and Msr1, and reduced neuroinflammation by enhancing the phosphorylation of Akt and by inhibiting the phosphorylation of NF-κB. AGN196996, Msr1 siRNA, and LY294002 reversed the therapeutic effects of Am80 by reducing the expression of Msr1 and the phosphorylation of Akt. In vitro model of SAH, Am80 promoted M1-to-M2 phenotypic polarization in microglia and suppressed the nuclear transcription of NF-κB. CONCLUSION: Activation of the RARα receptor attenuated neuroinflammation by promoting M1-to-M2 phenotypic polarization in microglia and regulating the Mafb/Msr1/PI3K-Akt/NF-κB pathway. RARα might serve as a potential target for SAH therapy.
Assuntos
NF-kappa B , Hemorragia Subaracnóidea , Animais , Fator de Transcrição MafB/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Proteínas Oncogênicas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismoRESUMO
PURPOSE: Tamibarotene is a synthetic retinoid that inhibits proliferation and induces differentiation of malignant cells by binding to the retinoic acid receptor α/ß. Previous in vitro studies have shown that some pediatric solid tumors with retinoic acid receptors differentiate in response to retinoic acid. We conducted a phase I dose-escalation study to determine the recommended dose of tamibarotene for further study in pediatric and young adult patients with recurrent/refractory solid tumors. METHODS: Pediatric and young adult patients with recurrent/refractory solid tumors were administered tamibarotene at 4, 6, 8, 10, and 12 mg/m2/day for 14 or 21 days of a 28 day cycle. Safety, efficacy, and pharmacokinetics of tamibarotene were evaluated. RESULTS: Twenty-two patients (median age 8 years) were enrolled in this study. No dose-limiting toxicity (DLT) was encountered, and tamibarotene was generally well tolerated. Two patients experienced severe adverse events (AEs), leading to discontinuation of the treatment. One grade 4 venous thrombosis and one grade 2 erythema multiforme were observed, which promptly resolved after tamibarotene discontinuance. The grade 4 venous thrombosis was a severe AE but not DLT because it occurred after the evaluation period. Pharmacokinetic analyses showed a dose-dependent increase in the maximum drug concentration (Cmax) and area under the concentration-time curve (AUC). None of the patients achieved a complete response or partial response. Seven patients had stable disease lasting longer than 18 weeks. CONCLUSIONS: The recommended dose for phase II study of tamibarotene in pediatric and young adult patients with refractory solid tumors is 12 mg/m2/day for 21 days in a 28 day cycle.
Assuntos
Antineoplásicos/administração & dosagem , Benzoatos/administração & dosagem , Neoplasias/tratamento farmacológico , Tetra-Hidronaftalenos/administração & dosagem , Adolescente , Adulto , Antineoplásicos/farmacocinética , Benzoatos/farmacocinética , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Tetra-Hidronaftalenos/farmacocinética , Adulto JovemRESUMO
The outbreak of the triple mutant strain of severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) was more virulent and pathogenic than its original strain. The viral triple mutant strain of SARS-COV-2 is extremely adaptive and increases penetrability into the host. The triple mutant viral strain was first reported in Brazil and South Africa and then communicated to different countries responsible for the second wave of the coronavirus disease (COVID-19) global pandemic with a high mortality rate. The reported genomic mutations are responsible for the alterations in the viral functional and structural proteins, causing the ineffectiveness of the existing antiviral therapy targeting these proteins. Thus, in current research, molecular docking simulation-based virtual screening of a ligand library consisting of FDA-approved existing drugs followed by molecular dynamics simulation-based validation of leads was performed to develop a potent inhibitor molecule for the triple mutant viral strain SARS-CoV-2. Based on the safety profile, tamibarotene was selected as a safe and effective drug candidate for developing therapy against the triple mutant viral spike protein of SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Benzoatos , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tetra-HidronaftalenosRESUMO
BACKGROUND: After long-term analysis of the JALSG-APL204 study we recently reported that maintenance therapy with tamibarotene was more effective than all-trans retinoic acid (ATRA) by reducing relapse in APL patients. Here, the clinical significance of other important prognostic factors was evaluated with multivariate analyses. PATIENTS AND METHODS: Newly diagnosed acute promyelocytic leukemia (APL) patients were registered with the study. Induction was composed of ATRA and chemotherapy. Patients who achieved molecular remission after consolidation were randomly assigned to maintenance with tamibarotene or ATRA. RESULTS: Of the 344 eligible patients, 319 (93%) achieved complete remission (CR). After completing consolidation, 269 patients underwent maintenance random assignment-135 to ATRA, and 134 to tamibarotene. By multivariate analysis, overexpression of CD56 in blast was an independent unfavorable prognostic factor for relapse-free survival (RFS) (p = 0.006) together with more than 10.0 × 109/L WBC counts (p = 0.001) and the ATRA arm in maintenance (p = 0.028). Of all phenotypes, CD56 was related most clearly to an unfavorable prognosis. The CR rate, mortality rate during induction and overall survival of CD56+ APL were not significantly different compared with CD56- APL. CD56 is continuously an independent unfavorable prognostic factor for RFS in APL patients treated with ATRA and chemotherapy followed by ATRA or tamibarotene maintenance therapy.
RESUMO
Bronchiolitis obliterans (BO) is a significant life-threatening complication that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and it is associated with increased morbidity and mortality. BO responds poorly to corticosteroids or immunosuppressants, and there are currently no established treatment approaches. We herein describe a patient with biopsy-proven BO after allo-HSCT who was successfully treated with tamibarotene, a novel synthetic retinobenzoic acid. Tamibarotene led to a dramatic improvement in lung function as well as cutaneous manifestations of chronic graft-vs-host disease. A large prospective clinical trial is therefore warranted to confirm the efficacy of tamibarotene in BO.