Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4071-4081, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36862087

RESUMO

Roughly half of the human population lives near the coast, and coastal water pollution (CWP) is widespread. Coastal waters along Tijuana, Mexico, and Imperial Beach (IB), USA, are frequently polluted by millions of gallons of untreated sewage and stormwater runoff. Entering coastal waters causes over 100 million global annual illnesses, but CWP has the potential to reach many more people on land via transfer in sea spray aerosol (SSA). Using 16S rRNA gene amplicon sequencing, we found sewage-associated bacteria in the polluted Tijuana River flowing into coastal waters and returning to land in marine aerosol. Tentative chemical identification from non-targeted tandem mass spectrometry identified anthropogenic compounds as chemical indicators of aerosolized CWP, but they were ubiquitous and present at highest concentrations in continental aerosol. Bacteria were better tracers of airborne CWP, and 40 tracer bacteria comprised up to 76% of the bacteria community in IB air. These findings confirm that CWP transfers in SSA and exposes many people along the coast. Climate change may exacerbate CWP with more extreme storms, and our findings call for minimizing CWP and investigating the health effects of airborne exposure.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , Humanos , Água do Mar/microbiologia , Rios , Esgotos/análise , RNA Ribossômico 16S , Poluição da Água , Bactérias , Aerossóis/análise , Monitoramento Ambiental/métodos
2.
Environ Pollut ; 342: 123067, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043772

RESUMO

The Tijuana River is a transborder river that flows northwest across the border from Baja California in Mexico into Southern California before discharging into the Pacific Ocean. The river is frequently contaminated with raw sewage due to inadequate sanitary infrastructure in Tijuana. To assess the type and degree of microbial contamination, water samples were collected monthly from a near-border and an estuarine site from August 2020 until May 2021. A portion of each sample was used for epifluorescent microscopy and DNA was extracted directly from the rest for shotgun metagenomic sequencing. After sequence quality checking and processing, we used the rapid taxonomic identifier tool Kaiju to characterize the microbial diversity of the metagenomes and matched the sequences against the Comprehensive Antibiotic Resistance Database (CARD) to examine antimicrobial resistance genes (ARGs). Bacterial and viral-like particle (VLP) abundance was consistently higher in the near-border samples than in the estuarine samples, while alpha diversity (within sample biodiversity) was higher in estuarine samples. Beta-diversity analysis found clear compositional separation between samples from the two sites, and the near-border samples were more dissimilar to one another than were the estuarine sites. Near-border samples were dominated by fecal-associated bacteria and bacteria associated with sewage sludge, while estuarine sites were dominated by marine bacteria. ARGs were more abundant at the near-border site, but were also readily detectable in the estuarine samples, and the most abundant ARGs had multi-resistance to beta-lactam antibiotics. SourceTracker analysis identified human feces and sewage sludge to be the largest contributors to the near-border samples, while marine waters dominated estuarine samples except for two sewage overflow dates with high fecal contamination. Overall, our research determined human sewage microbes to be common in the Tijuana River, and the prevalence of ARGs confirms the importance of planned infrastructure treatment upgrades for environmental health.


Assuntos
Microbiota , Rios , Humanos , Rios/microbiologia , Metagenoma , Esgotos/microbiologia , Antibacterianos , México , Bactérias/genética , Genes Bacterianos , Metagenômica
3.
Artigo em Inglês | MEDLINE | ID: mdl-36612923

RESUMO

The Tijuana River watershed is binational, flowing from Tijuana, Mexico into San Diego and Imperial Beach, USA. Aging sewage and stormwater infrastructure in Tijuana has not kept pace with population growth, causing overflows into this watershed during major rainfall or equipment failures. The public health consequences of this impaired watershed on the surrounding communities remain unknown. Here, we performed untargeted metagenomic sequencing to better characterize the sewage contamination in the Tijuana River, identifying potential pathogens and molecular indicators of antibiotic resistance in surface waters. In 2019-2020, water samples were collected within 48 h of major rainfall events at five transborder flow sites and at the mouth of the river in the US portion of the Tijuana River and estuary. After filtration, DNA was extracted and sequenced, and sequences were run through the Kaiju taxonomic classification program. A pathogen profile of the most abundant disease-causing microbes and viruses present in each of the samples was constructed, and specific markers of fecal contamination were identified and linked to each site. Results from diversity analysis between the sites showed clear distinction as well as similarities between sites and dates, and antibiotic-resistant genes were found at each site. This serves as a baseline characterization of microbial exposures to these local communities.


Assuntos
Monitoramento Ambiental , Rios , Monitoramento Ambiental/métodos , Esgotos , Sequência de Bases , Antibacterianos , Microbiologia da Água , Fezes
4.
PeerJ ; 9: e11358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164231

RESUMO

Each year, over one hundred million people become ill and tens of thousands die from exposure to viruses and bacteria from sewage transported to the ocean by rivers, estuaries, stormwater, and other coastal discharges. Water activities and seafood consumption have been emphasized as the major exposure pathways to coastal water pollution. In contrast, relatively little is known about the potential for airborne exposure to pollutants and pathogens from contaminated seawater. The Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) study was a large-scale experiment designed to investigate the transport pathways of water pollution along the coast by releasing dye into the surfzone in Imperial Beach, CA. Additionally, we leveraged this ocean-focused study to investigate potential airborne transmission of coastal water pollution by collecting complementary air samples along the coast and inland. Aerial measurements tracked sea surface dye concentrations along 5+ km of coast at 2 m × 2 m resolution. Dye was detected in the air over land for the first 2 days during two of the three dye releases, as far as 668 m inland and 720 m downwind of the ocean. These coordinated water/air measurements, comparing dye concentrations in the air and upwind source waters, provide insights into the factors that lead to the water-to-air transfer of pollutants. These findings show that coastal water pollution can reach people through an airborne pathway and this needs to be taken into account when assessing the full impact of coastal ocean pollution on public health. This study sets the stage for further studies to determine the details and importance of airborne exposure to sewage-based pathogens and toxins in order to fully assess the impact of coastal pollution on public health.

5.
PeerJ ; 9: e10755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628637

RESUMO

Thick bark has been shown to protect trees from wildfires, but can it protect trees from an ambrosia beetle attack? We addressed this question by examining the distribution of holes of the invasive Kuroshio Shot Hole Borer (KSHB, Euwallacea kuroshio; Coleoptera: Scolytinae) in the bark of Goodding's black willow (Salix gooddingii), one of the KSHB's most-preferred hosts. The study was conducted in the Tijuana River Valley, California, in 2016-17, during the peak of the KSHB infestation there. Using detailed measurements of bark samples cut from 27 infested trees, we tested and found support for two related hypotheses: (1) bark thickness influences KSHB attack densities and attack locations, i.e., the KSHB bores abundantly through thin bark and avoids boring through thick bark; and (2) bark thickness influences KSHB impacts, i.e., the KSHB causes more damage to thinner-barked trees than to thicker-barked trees. Our results indicate that thick bark protects trees because it limits the density of KSHB entry points and thereby limits internal structural damage to low, survivable levels. This is the first study to identify bark thickness as a factor that influences the density of KSHB-or any ambrosia beetle-in its host tree, and the first to link bark thickness to rates of host tree mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA