Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biopolymers ; 114(7): e23554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232459

RESUMO

The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2 CO3 -degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.


Assuntos
Fibroínas , Sericinas , Humanos , Fibroínas/química , Alicerces Teciduais/química , Bromelaínas , Materiais Biocompatíveis/química , Sericinas/química , Peso Molecular , Células Endoteliais/metabolismo , Engenharia Tecidual/métodos , Seda/química , Proliferação de Células
2.
Exp Eye Res ; 218: 109027, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276182

RESUMO

The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.


Assuntos
Epitélio Corneano , Engenharia Tecidual , Animais , Cegueira , Gelatina , Humanos , Ácido Hialurônico , Hidrogéis , Coelhos , Engenharia Tecidual/métodos
3.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430476

RESUMO

The good treatment of skin defects has always been a challenge in the medical field, and the emergence of tissue engineering skin provides a new idea for the treatment of injured skin. However, due to the single seed cells, the tissue engineering skin has the problem of slow vascularization at the premonitory site after implantation into the human body. Cell co-culture technology can better simulate the survival and communication environment of cells in the human body. The study of multicellular co-culture hopes to bring a solution to the problem of tissue engineering. In this paper, human skin fibroblasts (HSFs) and human vascular endothelial cells (HVECs) were co-cultured in Transwell. The Cell Counting Kit 8 (CCK8), Transwell migration chamber, immunofluorescence, Western blot (WB), and real time quantitative PCR (RT-qPCR) were used to study the effects of HVECs on cell activity, migration factor (high mobility group protein 1, HMGB1) and vascularization factor (vascular endothelial growth factor A, VEGFA and fibroblast growth factor 2, FGF2) secretion of HSFs after co-cultured with HVECs in the Transwell. The biological behavior of HSFs co-cultured with HVECs was studied. The experimental results are as follows: (1) The results of cck8 showed that HVECS could promote the activity of HSFs. (2) HVECs could significantly promote the migration of HSFs and promote the secretion of HMGB1. (3) HVECs could promote the secretion of VEGFA and FGF2 of HSFs. (4) The HVECs and HSFs were inoculated on tissue engineering scaffolds at the ratio of 1:4 and were co-cultured and detected for 7 days. The results showed that from the third day, the number of HSFs was significantly higher than that of the control group without HVECs.


Assuntos
Células Endoteliais , Proteína HMGB1 , Humanos , Técnicas de Cocultura , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína HMGB1/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499146

RESUMO

It has been reported that chitosan scaffolds, due to their physicochemical properties, stimulate cell proliferation in different tissues of the human body. This study aimed to determine the physicochemical, mechanical, and biological properties of chitosan scaffolds crosslinked with ammonium hydroxide, with different pH values, to better understand cell behavior depending on the pH of the biomaterial. Scaffolds were either neutralized with sodium hydroxide solution, washed with distilled water until reaching a neutral pH, or kept at alkaline pH. Physicochemical characterization included scanning electron microscopy (SEM), elemental composition (EDX), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and mechanical testing. In vitro cytotoxicity was assessed via dental-pulp stem cells' (DPSCs') biocompatibility. The results revealed that the neutralized scaffolds exhibited better cell proliferation and morphology. It was concluded that the chitosan scaffolds' high pH (due to residual ammonium hydroxide) decreases DPSCs' cell viability.


Assuntos
Quitosana , Humanos , Quitosana/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Hidróxido de Amônia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade
5.
Adv Exp Med Biol ; 1249: 85-93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32602092

RESUMO

Visible light-curable hydrogels have been investigated as tissue engineering scaffolds and drug delivery carriers due to their physicochemical and biological properties such as porosity, reservoirs for drugs/growth factors, and similarity to living tissue. The physical properties of hydrogels used in biomedical applications can be controlled by polymer concentration, cross-linking density, and light irradiation time. The aim of this review chapter is to outline the results of previous research on visible light-curable hydrogel systems. In the first section, we will introduce photo-initiators and mechanisms for visible light curing. In the next section, hydrogel applications as drug delivery carriers will be emphasized. Finally, cellular interactions and applications in tissue engineering will be discussed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/efeitos da radiação , Luz , Engenharia Tecidual/métodos , Humanos , Porosidade , Alicerces Teciduais
6.
Artif Organs ; 43(5): 515-523, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30229979

RESUMO

The incidence of peripheral nerve injuries is on the rise and the current gold standard for treatment of such injuries is nerve autografting. Given the severe limitations of nerve autografts which include donor site morbidity and limited supply, neural guide conduits (NGCs) are considered as an effective alternative treatment. Conductivity is a desired property of an ideal NGC. Reduced graphene oxide (rGO) possesses several advantages in addition to its conductive nature such as high surface area to volume ratio due to its nanostructure and has been explored for its use in tissue engineering. However, most of the works reported are on traditional 2D culture with a layer of rGO coating, while the native tissue microenvironment is three-dimensional. In this study, PCL/rGO scaffolds are fabricated using electrohydrodynamic jet (EHD-jet) 3D printing method as a proof of concept study. Mechanical and material characterization of the printed PCL/rGO scaffolds and PCL scaffolds was done. The addition of rGO results in softer scaffolds which is favorable for neural differentiation. In vitro neural differentiation studies using PC12 cells were also performed. Cell proliferation was higher in the PCL/rGO scaffolds than the PCL scaffolds. Reverse transcription polymerase chain reaction and immunocytochemistry results reveal that PCL/rGO scaffolds support neural differentiation of PC12 cells.


Assuntos
Grafite/química , Neurogênese , Traumatismos dos Nervos Periféricos/terapia , Poliésteres/química , Alicerces Teciduais/química , Animais , Condutividade Elétrica , Regeneração Nervosa , Oxirredução , Células PC12 , Impressão Tridimensional , Ratos , Engenharia Tecidual
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(3): 488-492, 2018 06 25.
Artigo em Zh | MEDLINE | ID: mdl-29938960

RESUMO

Meniscus injury has been one of the most common knee injuries in current society. The research on artificial meniscus implants as substitutes in meniscus reconstruction therapy has become global focus in order to solve clinical problems such as irreparable meniscus injury and symptoms after full or partial meniscectomy. At present, researches on artificial meniscus implants mainly focus on biodegradable meniscus scaffolds and non-biodegradable meniscus substitutes. Although the commercialized meniscal implants, such as CMI ®, Actifit ® and NUsurface ®, have been applied in the clinical, none of them can perfectively restore or permanently replace the natural meniscus tissue, effectively solve the symptoms after meniscectomy, and prevent cartilage degenerative diseases. The research progress, application, advantages and disadvantages of different kinds of artificial meniscus implants are reviewed in this manuscript, and the prospect is provided.


Assuntos
Traumatismos do Joelho , Menisco , Próteses e Implantes , Lesões do Menisco Tibial , Humanos , Meniscos Tibiais , Lesões do Menisco Tibial/cirurgia
8.
Cellulose (Lond) ; 24(1): 253-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32355428

RESUMO

We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorite in the presence of sodium bromide and 2,2,6,6-tetramethylpipiridine 1-oxyl radical to introduce a positive, or negative, charge, respectively. This modification process did not degrade the mechanical properties of the bulk material, but grafting of a positively charged moiety to the cellulose surface (cationic cellulose) increased cell attachment by 70% compared to unmodified cellulose, while negatively charged, oxidised cellulose films (anionic cellulose), showed low levels of cell attachment comparable to those seen for unmodified cellulose. Only a minimal level of cationic surface derivitisation (ca 3% degree of substitution) was required for increased cell attachment and no mediating proteins were required. Cell adhesion studies exhibited the same trends as the attachment studies, while the mean cell area and aspect ratio was highest on the cationic surfaces. Overall, we demonstrated the utility of positively charged bacterial cellulose in tissue engineering in the absence of proteins for cell attachment.

9.
Polymers (Basel) ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38932029

RESUMO

Tissue engineering scaffolds have been dedicated to regenerating damaged tissue by serving as host biomaterials for cell adhesion, growth, differentiation, and proliferation to develop new tissue. In this work, the design and fabrication of a biodegradable bilayer scaffold consisting of a ternary PLLA/PCL/CAB blend film layer and a PLGA/curcumin (CC) electrospun fiber layer were studied and discussed in terms of surface morphology, tensile mechanical properties, and molecular interactions. Three different compositions of PLLA/PCL/CAB-60/15/25 (TBF1), 75/10/15 (TBF2), and 85/5/10 (TBF3)-were fabricated using the solvent casting method. The electrospun fibers of PLGA/CC were fabricated using chloroform (CF) and dimethylformamide (DMF) co-solvents in 50:50 and 60:40 volume ratios. Spherical patterns of varying sizes were observed on the surfaces of all blend films-TBF1 (17-21 µm) > TBF2 (5-9 µm) > TBF3 (1-5 µm)-caused by heterogeneous surfaces inducing bubble nucleation. The TBF1, TBF2, and TBF3 films showed tensile elongation at break values of approximately 170%, 94%, and 43%, respectively. The PLGA/CC electrospun fibers fabricated using 50:50 CF:DMF had diameters ranging from 100 to 400 nm, which were larger than those of the PLGA fibers (50-200 nm). In contrast, the PLGA/CC electrospun fibers fabricated using 60:40 CF:DMF had diameters mostly ranging from 200 to 700 nm, which were larger than those of PLGA fibers (200-500 nm). Molecular interactions via hydrogen bonding were observed between PLGA and CC. The surface morphology of the bilayer scaffold demonstrated adhesion between these two solid surfaces resembling "thread stitches" promoted by hydrophobic interactions, hydrogen bonding, and surface roughness.

10.
ACS Biomater Sci Eng ; 10(7): 4114-4144, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38830819

RESUMO

Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.


Assuntos
Osso e Ossos , Nanofibras , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Nanofibras/química , Alicerces Teciduais/química , Humanos , Animais , Materiais Biocompatíveis/química
11.
Int J Biol Macromol ; 274(Pt 1): 133120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876244

RESUMO

The utilization of basic fibroblast growth factor (bFGF) in the development of tissue-engineered scaffolds is both challenging and imperative. In our pursuit of creating a scaffold that aligns with the natural healing process, we initially fabricated chitosan-bFGF nanoparticles (CS-bFGF NPs) through electrostatic spraying. Subsequently, polylactic acid (PLA) fiber was prepared using electrospinning technique, and the CS-bFGF NPs were uniformly embedded within the pores of porous PLA fibers. Scanning electron micrographs illustrate the smooth surface of the nanoparticles, showing a porous structure intricately attached to PLA fibers. Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses provided conclusive evidence that the CS-bFGF NPs were uniformly distributed throughout the porous PLA fibers, forming a robust physical bond through electrostatic adsorption. The resultant scaffolds exhibited commendable mechanical properties and hydrophilicity, facilitating a sustained-release for 72 h. Furthermore, the biocompatibility and degradation performance of the scaffolds were substantiated by monitoring conductivity and pH changes in pure water over different time intervals, complemented by scanning electron microscopy (SEM) observations. Cell experiments confirmed the cytocompatibility of the scaffolds. In animal studies, the group treated with 16 % NPs/Scaffold demonstrated the highest epidermal reconstruction rate. In summary, our developed materials present a promising candidate for serving as a tissue engineering scaffold, showcasing exceptional biocompatibility, sustained-release characteristics, and substantial potential for promoting epidermal regeneration.


Assuntos
Quitosana , Preparações de Ação Retardada , Nanopartículas , Poliésteres , Soroalbumina Bovina , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanopartículas/química , Animais , Soroalbumina Bovina/química , Porosidade , Materiais Biocompatíveis/química , Bovinos
12.
Biomed Mater ; 19(4)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38857605

RESUMO

Chronic skin wounds pose a global clinical challenge, necessitating effective treatment strategies. This study explores the potential of 3D printed Poly Lactic Acid (PLA) scaffolds, enhanced with Whey Protein Concentrate (WPC) at varying concentrations (25, 35, and 50% wt), for wound healing applications. PLA's biocompatibility, biodegradability, and thermal stability make it an ideal material for medical applications. The addition of WPC aims to mimic the skin's extracellular matrix and enhance the bioactivity of the PLA scaffolds. Fourier Transform Infrared Spectroscopy results confirmed the successful loading of WPC into the 3D printed PLA-based scaffolds. Scanning Electron Microscopy (SEM) images revealed no significant differences in pore size between PLA/WPC scaffolds and pure PLA scaffolds. Mechanical strength tests showed similar tensile strength between pure PLA and PLA with 50% WPC scaffolds. However, scaffolds with lower WPC concentrations displayed reduced tensile strength. Notably, all PLA/WPC scaffolds exhibited increased strain at break compared to pure PLA. Swelling capacity was highest in PLA with 25% WPC, approximately 130% higher than pure PLA. Scaffolds with higher WPC concentrations also showed increased swelling and degradation rates. Drug release was found to be prolonged with increasing WPC concentration. After seven days of incubation, cell viability significantly increased in PLA with 50% WPC scaffolds compared to pure PLA scaffolds. This innovative approach could pave the way for personalized wound care strategies, offering tailored treatments and targeted drug delivery. However, further studies are needed to optimize the properties of these scaffolds and validate their effectiveness in clinical settings.


Assuntos
Bandagens , Materiais Biocompatíveis , Poliésteres , Impressão Tridimensional , Resistência à Tração , Alicerces Teciduais , Proteínas do Soro do Leite , Cicatrização , Proteínas do Soro do Leite/química , Poliésteres/química , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Humanos , Materiais Biocompatíveis/química , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Sobrevivência Celular/efeitos dos fármacos , Porosidade , Liberação Controlada de Fármacos , Pele/metabolismo
13.
Dent Mater J ; 43(5): 718-728, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39218686

RESUMO

Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.


Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular , Colágeno , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Colágeno/química , Fator de von Willebrand , Células Cultivadas
14.
Gels ; 10(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667689

RESUMO

The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.

15.
J Biomater Sci Polym Ed ; 35(4): 443-462, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38104316

RESUMO

Scaffolds based on gelatin (Gel) play a crucial role in bone tissue engineering. However, the low mechanical properties, rapid biodegradation rate, insufficient osteogenic activity and lacking anti-infective properties limit their applications in bone regeneration. Herein, the incorporation of ibuprofen (IBU)-loaded zeolitic imidazolate framework-8 (ZIF-8) in a methacrylated gelatin (GelMA) matrix was proposed as a simple and effective strategy to develop the IBU-ZIF-8@GelMA scaffolds for enhanced bone regeneration capacity. Results indicated that the IBU-loaded ZIF-8 nanoparticles with tiny particle sizes were uniformly distributed in the GelMA matrix of the IBU-ZIF-8@GelMA scaffolds, and the IBU-loaded ZIF-8 growing in the scaffolds enabled the controlled and sustained releasing of Zn2+ and IBU in pH = 5.5 over a long period for efficient bone repair and long-term anti-inflammatory activity. Furthermore, the doping of the IBU-loaded ZIF-8 nanoparticles efficiently enhanced the compression performance of the GelMA scaffolds. In vitro studies indicated that the prepared scaffolds presented no cytotoxicity to MC3T3-E1 cells and the released Zn2+ during the degradation of the scaffolds promoted MC3T3-E1 cell osteogenic differentiation. Thus, the drug-loaded ZIF-8 modified 3D printed GelMA scaffolds demonstrated great potential in treating bone defects.


Assuntos
Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Regeneração Óssea , Engenharia Tecidual/métodos , Impressão Tridimensional
16.
Biomimetics (Basel) ; 8(1)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975324

RESUMO

Three-dimensional (3D) bioprinting has emerged as a promising scaffold fabrication strategy for tissue engineering with excellent control over scaffold geometry and microstructure. Nanobiomaterials as bioinks play a key role in manipulating the cellular microenvironment to alter its growth and development. This review first introduces the commonly used nanomaterials in tissue engineering scaffolds, including natural polymers, synthetic polymers, and polymer derivatives, and reveals the improvement of nanomaterials on scaffold performance. Second, the 3D bioprinting technologies of inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, and stereolithography bioprinting are comprehensively itemized, and the advantages and underlying mechanisms are revealed. Then the convergence of 3D bioprinting and nanotechnology applications in tissue engineering scaffolds, such as bone, nerve, blood vessel, tendon, and internal organs, are discussed. Finally, the challenges and perspectives of convergence of 3D bioprinting and nanotechnology are proposed. This review will provide scientific guidance to develop 3D bioprinting tissue engineering scaffolds by nanotechnology.

17.
Int J Biol Macromol ; 245: 125511, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356693

RESUMO

Large bone defects have presented a significant challenge in orthopedic treatments, and the emergence of tissue-engineered scaffolds has introduced new avenues for treatment. Nonetheless, the clinical application of such scaffolds has been hindered by drawbacks like inadequate mechanical properties, and deficient osteogenesis. Herein, a biocompatible polylactic acid (PLA) based composite was proposed to emulate cancellous bone's morphology by incorporating nano-hydroxyapatite (nHA). In addition, a quantity of Mg2+ and chitosan (CS) as active osteogenic factors were adopted to imitate the bone marrow mesenchymal components in vivo. Using a pre-evaporated solvent and sacrificial multi-template techniques, the cellular PLA-based tissue engineering scaffolds containing macropores larger than 100 µm and micropores smaller than 10 µm were developed. The scaffold's bionic structure, osteogenic active component, and multi-scale cellular make it comparable to cancellous bone, with favorable mechanical properties and hydrophilicity. Vitro tests using Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) demonstrated the scaffold's excellent biocompatibility to induce high efficiency of osteogenic differentiation. The bionic porous scaffold with multi-scale cellular structure also can recruit rBMSCs, promote bone regrowth and osteogenic differentiation, and facilitate the regeneration of defective bone tissue for repair. This contribution presented a promising strategy for future advancements in bone tissue engineering.


Assuntos
Biônica , Osteogênese , Ratos , Animais , Ratos Sprague-Dawley , Alicerces Teciduais/química , Osso e Ossos , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Diferenciação Celular , Regeneração Óssea
18.
Polymers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571149

RESUMO

Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.

19.
MedComm (2020) ; 4(6): e425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045828

RESUMO

The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.

20.
Med Nov Technol Devices ; 17: None, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909661

RESUMO

3D printing technology is an emerging technology. It constructs solid bodies by stacking materials layer by layer, and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients. The field of life sciences has received a great deal of attention. However, different 3D printing technologies and materials have their advantages and disadvantages, and there are limitations in clinical application. In this paper, the technology, materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed, and the future development trends and challenges in this field are prospected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA