Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 170, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114892

RESUMO

BACKGROUND: T cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3) initially discovered on the surface of Th1 cells, negatively regulates immune responses and mediates apoptosis of Th1 cells. An increasing number of studies have since shown that TIM-3 is crucial in the genesis and development of immune diseases, cancers, and chronic infectious illnesses. However, the effect of TIM-3 on endometriosis is still unknown. METHODS: Quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry were used to measure TIM-3 levels in endometriosis. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, colony-forming, Transwell® migration, Matrigel® invasion, and flow cytometry assays were used to explore the function of TIM-3 in vitro, and xenograft experiments in nude mice were used to assess its role in vivo. According to the RNA seq, brain-derived neurotrophic factor (BDNF) was screened. The involvement of specific proliferation-related signaling molecules was determined by transfecting a plasmid and adding an inhibitor in vivo and in vitro. RESULTS: TIM-3 mRNA and protein expression levels were significantly higher in eutopic and ectopic endometrial tissues than in normal endometrial tissues. By examining the effects of TIM-3 overexpression and knockdown on cell proliferation, migration, and invasion in vitro, and lesions formation in vivo, we found that the expression of TIM-3 was positively correlated with cell proliferation and clone formation in vitro, as well as lesions growth in nude mice. By adding the phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT) pathway inhibitor LY294002 and knocking down PI3K, we further verified that TIM-3 promotes proliferation in vivo and in vitro via the PI3K pathway. By transfecting the plasmid into ESC cells and gave inhibitors to endometriotic rats models, we tested that TIM-3 regulates the proliferation by BDNF-mediated PI3K/AKT axis. CONCLUSION: TIM-3 can promote the proliferation of endometriosis by BDNF-mediated PI3K/AKT axis in vivo and in vitro, which may provide a new therapeutic target for the treatment of endometriosis.


Assuntos
Endometriose , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Fator Neurotrófico Derivado do Encéfalo/genética , Endometriose/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Proliferação de Células , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA