Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 95, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372898

RESUMO

Human induced pluripotent stem cells (hiPSCs) offer opportunities to study human biology where primary cell types are limited. CRISPR technology allows forward genetic screens using engineered Cas9-expressing cells. Here, we sought to generate a CRISPR activation (CRISPRa) hiPSC line to activate endogenous genes during pluripotency and differentiation. We first targeted catalytically inactive Cas9 fused to VP64, p65 and Rta activators (dCas9-VPR) regulated by the constitutive CAG promoter to the AAVS1 safe harbor site. These CRISPRa hiPSC lines effectively activate target genes in pluripotency, however the dCas9-VPR transgene expression is silenced after differentiation into cardiomyocytes and endothelial cells. To understand this silencing, we systematically tested different safe harbor sites and different promoters. Targeting to safe harbor sites hROSA26 and CLYBL loci also yielded hiPSCs that expressed dCas9-VPR in pluripotency but silenced during differentiation. Muscle-specific regulatory cassettes, derived from cardiac troponin T or muscle creatine kinase promoters, were also silent after differentiation when dCas9-VPR was introduced. In contrast, in cell lines where the dCas9-VPR sequence was replaced with cDNAs encoding fluorescent proteins, expression persisted during differentiation in all loci and with all promoters. Promoter DNA was hypermethylated in CRISPRa-engineered lines, and demethylation with 5-azacytidine enhanced dCas9-VPR gene expression. In summary, the dCas9-VPR cDNA is readily expressed from multiple loci during pluripotency but induces silencing in a locus- and promoter-independent manner during differentiation to mesoderm derivatives. Researchers intending to use this CRISPRa strategy during stem cell differentiation should pilot their system to ensure it remains active in their population of interest.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos , Células Endoteliais , Diferenciação Celular/genética , Endotélio
2.
J Virol ; 97(4): e0194822, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971544

RESUMO

Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.


Assuntos
Fatores de Restrição Antivirais , Dependovirus , Vetores Genéticos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Dependovirus/genética , Dependovirus/imunologia , Fatores de Restrição Antivirais/genética , Fatores de Restrição Antivirais/metabolismo , Transgenes/genética , Regulação Viral da Expressão Gênica/genética , Células A549 , Células K562 , Técnicas de Inativação de Genes , Células Cultivadas , Humanos , Anemia de Fanconi/genética
3.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38531838

RESUMO

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Interferência de RNA , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , RNA de Cadeia Dupla/metabolismo , Transgenes , Animais Geneticamente Modificados/metabolismo , RNA Interferente Pequeno/genética
4.
BMC Vet Res ; 20(1): 275, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918814

RESUMO

Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Fluorescência Verde , Ratos Transgênicos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Fluorescência Verde/genética , Ratos , Técnicas de Transferência de Genes/veterinária , Transgenes , Masculino , Inativação Gênica , Feminino , Regiões Promotoras Genéticas
5.
Plant J ; 109(6): 1397-1415, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919766

RESUMO

RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores/fisiologia , Proteínas de Ligação a RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transgenes
6.
J Reprod Dev ; 69(6): 317-327, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880086

RESUMO

Induced pluripotent stem (iPS) cells are generated from somatic cells and can differentiate into various cell types. Therefore, these cells are expected to be a powerful tool for modeling diseases and transplantation therapy. Generation of domestic cat iPS cells depending on leukemia inhibitory factor has been reported; however, this strategy may not be optimized. Considering that domestic cats are excellent models for studying spontaneous diseases, iPS cell generation is crucial. In this study, we aimed to derive iPS cells from cat embryonic fibroblasts retrovirally transfected with mouse Oct3/4, Klf4, Sox2, and c-Myc. After transfection, embryonic fibroblasts were reseeded onto inactivated SNL 76/7 and cultured in a medium supplemented with basic fibroblast growth factor. Flat, compact, primary colonies resembling human iPS colonies were observed. Additionally, primary colonies were more frequently observed in the KnockOut Serum Replacement medium than in the fetal bovine serum (FBS) medium. However, enhanced maintenance and proliferation of iPS-like cells occurred in the FBS medium. These iPS-like cells expressed embryonic stem cell markers, had normal karyotypes, proliferated beyond 45 passages, and differentiated into all three germ layers in vitro. Notably, expression of exogenous Oct3/4, Klf4, and Sox2 was silenced in these cells. However, the iPS-like cells failed to form teratomas. In conclusion, this is the first study to establish and characterize cat iPS-like cells, which can differentiate into different cell types depending on the basic fibroblast growth factor.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gatos , Camundongos , Humanos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
7.
Plant Mol Biol ; 104(6): 575-582, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33000386

RESUMO

KEY MESSAGE: In the ros1-defective mutant, DREB1A repression by the transgene-induced promoter methylation of ice1-1 became inheritable across generations even in the absence of the causative transgene NICE1. Transgene silencing (TGS) is a widely observed event during plant bioengineering, which is presented as a gradual decrease in ectopic gene expression across generations and occasionally coupled with endogenous gene silencing based on DNA sequence similarity. TGS is known to be established by guided DNA methylation machinery. However, the machinery underlying gene recovery from TGS has not been fully elucidated. We previously reported that in ice1-1 outcross descendants, the expressional repression and recovery of DREB1A/CBF3 were instantly achieved by a newly discovered NICE1 transgene, instead of the formerly proposed ice1-1 mutation in the ICE1 gene. The plants harboring NICE1 produced small RNAs targeting and causing the DREB1A promoter to be hypermethylated and silenced. To analyze the role of the plant-specific active DNA demethylase REPRESSOR OF SILENCING 1 (ROS1) in instant DREB1A recovery, we propagated the NICE1-segregating population upon ros1 dysfunction and evaluated the gene expression and DNA methylation levels of DREB1A through generations. Our results showed that the epigenetic DREB1A repression was substantially sustained in subsequent generations even without NICE1 and stably inherited across generations. Consistent with the gene expression results, only incomplete DNA methylation removal was detected in the same generations. These results indicate that a novel inheritable epiallele emerged by the ros1 dysfunction. Overall, our study reveals the important role of ROS1 in the inheritability of TGS-associated gene repression.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilação de DNA , DNA de Plantas/metabolismo , Padrões de Herança
8.
J Exp Bot ; 71(4): 1574-1584, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31740977

RESUMO

As millions of seeds are produced from a breeding line, the long-term stability of transgene expression is vital for commercial-scale production of seeds with transgenic traits. Transgenes can be silenced by epigenetic mechanisms, but reactivation of expression can occur as a result of treatment with chromatin modification inhibitors such as 5-azacytidine, from stress such as heat or UV-B, or in mutants that have acquired a defect in gene silencing. Previously, we targeted a gfp reporter gene into the tobacco (Nicotiana tabacum) genome by site-specific recombination but still found some silenced lines among independent integration events. One such line also had a second random copy and both copies showed DNA hypermethylation. To test whether removing the second copy would reactivate gfp expression, two T1 plants were backcrossed to the wild type. Whereas the silenced status was maintained in the progenies from one backcross, spontaneous partial reactivation of gfp expression was found among progenies from a second backcross. However, this reactivation did not correlate with loss of the second random copy or with a significant change in the pattern or amount of DNA hypermethylation. This finding supports the suggestion that gene reactivation does not necessarily involve loss of DNA homology or methylation.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Transgenes
9.
J Cell Mol Med ; 23(2): 1613-1616, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450759

RESUMO

Matrix attachment regions (MARs) can enhance the expression level of transgene in Chinese hamster ovaries (CHO) cell expression system. However, improvements in function and analyses of the mechanism remains unclear. In this study, we screened two new and more functional MAR elements from the human genome DNA. The human MAR-3 and MAR-7 element were cloned and inserted downstream of the polyA site in a eukaryotic vector. The constructs were transfected into CHO cells, and screened under G418 to produce the stably transfected cell pools. The expression levels and stability of enhanced green fluorescent protein (eGFP) were detected by flow cytometry. The transgene copy number and transgene expression at mRNA level were detected by quantitative real-time PCR. The results showed that the expression level of eGFP of cells transfected with MAR-containing vectors were all higher than those of the vectors without MARs under transient and stably transfection. The enhancing effect of MAR-7 was higher than that of MAR-3. Additionally, we found that MAR significantly increased eGFP copy numbers and eGFP gene mRNA expression level as compared with the vector without. In conclusion, MAR-3 and MAR-7 gene can promote the expression of transgene in transfected CHO cells, and its effect may be related to the increase of the number of copies.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Regiões de Interação com a Matriz/genética , Animais , Células CHO , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Transfecção , Transgenes/genética
10.
Plant Biotechnol J ; 17(7): 1236-1247, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30549163

RESUMO

Targeted Genome Optimization (TGO) using site-specific nucleases to introduce a DNA double-strand break (DSB) at a specific target locus has broadened the options available to breeders for generation and combination of multiple traits. The use of targeted DNA cleavage in combination with homologous recombination (HR)-mediated repair, enabled the precise targeted insertion of additional trait genes (2mepsps, hppd, axmi115) at a pre-existing transgenic locus in cotton. Here we describe the expression and epigenome analyses of cotton Targeted Sequence Insertion (TSI) events over generations. In a subset of events, we observed variability in the level of transgene (hppd, axmi115) expression between independent but genetically identical TSI events. Transgene expression could also be differential within single events and variable over generations. This expression variability and silencing occurred independently of the transgene sequence and could be attributed to DNA methylation that was further linked to different DNA methylation mechanisms. The trigger(s) of transgene DNA methylation remains elusive but we hypothesize that targeted DSB induction and repair could be a potential trigger for DNA methylation.


Assuntos
Metilação de DNA , Gossypium/genética , Mutagênese Insercional , Plantas Geneticamente Modificadas/genética , DNA de Plantas/química , Regulação da Expressão Gênica de Plantas , Transgenes
12.
Biotechnol Lett ; 41(3): 443-451, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30603831

RESUMO

OBJECTIVE: Studies concerning 2b protein from Cucumovirus showed 2b to effectively repress functioning of the plant silencing complex, current study aimed whether retransformation with 2b gene able to restore silenced transgene expression in plant cells. RESULTS: A rolB-transgenic cell culture of Vitis amurensis Rupr. that was continuously subcultured during more than 10 years and exhibited decreased transcription of the rolB transgene was retransformed with the 2b gene of Cucumovirus-NK. Three cell lines retransformed with 2b showed a significant up-regulation of rolB expression accompanied with enhancements in their stilbenes content level in more than 2,7-fold compared to parental rolB-transgenic cell line. The mentioned increase in the level of stilbenes content was due to activation of certain stilbene synthase genes expression responsible for stilbenes biosynthesis in V. amurensis cells. Restoration of rolB expression upon 2b-retransformation led to increase in the expression levels of VaSTS2-VaSTS5 and VaSTS7 isoforms. CONCLUSIONS: 2b from CMV-NK can reactivate a silenced transgene expression, even after 10 years of subcultivation, nevertheless, optimization of the methods concerning 2b introduction in plant genomes is necessary to avoid undesirable silencing effects.


Assuntos
Proteínas de Bactérias/genética , Cucumovirus/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Transformação Genética , Proteínas Virais/genética , Vitis/genética , beta-Glucosidase/genética , Proteínas de Bactérias/biossíntese , Inativação Gênica , Estilbenos/metabolismo , Transcrição Gênica , beta-Glucosidase/biossíntese
13.
Plant J ; 90(3): 505-519, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28207953

RESUMO

Post-transcriptional gene silencing (PTGS) is a defense mechanism that targets invading nucleic acids from endogenous (transposons) or exogenous (pathogens, transgenes) sources. Genetic screens based on the reactivation of silenced transgenes have long been used to identify cellular components and regulators of PTGS. Here we show that the first isolated PTGS-deficient mutant, sgs1, is impaired in the transcription factor NAC52. This mutant exhibits striking similarities to a mutant impaired in the H3K4me3 demethylase JMJ14 isolated from the same genetic screen. These similarities include increased transgene promoter DNA methylation, reduced H3K4me3 and H3K36me3 levels, reduced PolII occupancy and reduced transgene mRNA accumulation. It is likely that increased DNA methylation is the cause of reduced transcription because the effect of jmj14 and sgs1 on transgene transcription is suppressed by drm2, a mutation that compromises de novo DNA methylation, suggesting that the JMJ14-NAC52 module promotes transgene transcription by preventing DNA methylation. Remarkably, sgs1 has a stronger effect than jmj14 and nac52 null alleles on PTGS systems requiring siRNA amplification, and this is due to reduced SGS3 mRNA levels in sgs1. Given that the sgs1 mutation changes a conserved amino acid of the NAC proteins involved in homodimerization, we propose that sgs1 corresponds to a neomorphic nac52 allele encoding a mutant protein that lacks wild-type NAC52 activity but promotes SGS3 downregulation. Together, these results indicate that impairment of PTGS in sgs1 is due to its dual effect on transgene transcription and SGS3 transcription, thus compromising siRNA amplification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inativação Gênica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , Transgenes/genética , Transgenes/fisiologia
14.
Dev Biol ; 412(1): 57-70, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26900887

RESUMO

Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , RNA Helicases/genética , Transgenes , Animais , Inativação Gênica , Mutação
15.
Plant Biotechnol J ; 15(5): 614-623, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862820

RESUMO

Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.


Assuntos
Agrobacterium/genética , Marcadores Genéticos , Plantas Geneticamente Modificadas , Triticum/genética , China , Cruzamentos Genéticos , Metilação de DNA , Inativação Gênica , Poliploidia , Regiões Promotoras Genéticas , Transformação Bacteriana
16.
Plant Cell Rep ; 36(8): 1311-1322, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28510781

RESUMO

KEY MESSAGE: Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 µM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.


Assuntos
Azacitidina/farmacologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transgenes/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/efeitos dos fármacos , Transgenes/efeitos dos fármacos
17.
Plant J ; 81(2): 223-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376953

RESUMO

Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER-LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double-stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S-driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild-type plants. Nonetheless, in a dcl4 mutant compromised in phloem-originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem-originating silencing is dependent on the activity of RNA-DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ribonuclease III/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Inativação Gênica/fisiologia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Ribonuclease III/genética
18.
Transgenic Res ; 25(2): 149-62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732611

RESUMO

Transgenes in genetically modified plants are often not reliably expressed during development or in subsequent generations. Transcriptional gene silencing (TGS) as well as post-transcriptional gene silencing (PTGS) have been shown to occur in transgenic plants depending on integration pattern, copy number and integration site. In an effort to reduce position effects, to prevent read-through transcription and to provide a more accessible chromatin structure, a P35S-ß-glucuronidase (P35S-gus) transgene flanked by a scaffold/matrix attachment region from petunia (Petun-SAR), was introduced in Nicotiana tabacum plants by Agrobacterium tumefaciens mediated transformation. It was found that Petun-SAR mediates enhanced expression and copy number dependency up to 2 gene copies, but did not prevent gene silencing in transformants with multiple and rearranged gene copies. However, in contrast to the non-SAR transformants where silencing was irreversible and proceeded during long-term vegetative propagation and in progeny plants, gus expression in Petun-SAR plants was re-established in the course of development. Gene silencing was not necessarily accompanied by DNA methylation, while the gus transgene could still be expressed despite considerable CG methylation within the coding region.


Assuntos
Dosagem de Genes , Glucuronidase/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Metilação de DNA/genética , Expressão Gênica , Inativação Gênica , Glucuronidase/biossíntese , Regiões de Interação com a Matriz/genética , Petunia/genética , Regiões Promotoras Genéticas , Transgenes/genética
19.
Plant Cell Rep ; 35(1): 43-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26373653

RESUMO

KEY MESSAGE: We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.


Assuntos
Caulimovirus/genética , Lactuca/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Reporter , Gentiana/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
20.
Biotechnol Genet Eng Rev ; 31(1-2): 82-107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27160661

RESUMO

Despite very good safety records, clinical trials using plasmid DNA failed due to low transfection efficiency and brief transgene expression. Although this failure is both due to poor plasmid design and to inefficient delivery methods, here we will focus on the former. The DNA elements like CpG motifs, selection markers, origins of replication, cryptic eukaryotic signals or nuclease-susceptible regions and inverted repeats showed detrimental effects on plasmids' performance as biopharmaceuticals. On the other hand, careful selection of promoter, polyadenylation signal, codon optimization and/or insertion of introns or nuclear-targeting sequences for therapeutic protein expression can enhance the clinical efficacy. Minimal vectors, which are devoid of the bacterial backbone and consist exclusively of the eukaryotic expression cassette, demonstrate better performance in terms of expression levels, bioavailability, transfection rates and increased therapeutic effects. Although the results are promising, minimal vectors have not taken over the conventional plasmids in clinical trials due to challenging manufacturing issues.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Plasmídeos/genética , Animais , DNA/genética , Humanos , Regiões Promotoras Genéticas , Origem de Replicação , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA