Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(19): 10303-10321, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37642602

RESUMO

Impairments in spatial navigation in humans can be preclinical signs of Alzheimer's disease. Therefore, cognitive tests that monitor deficits in spatial memory play a crucial role in evaluating animal models with early stage Alzheimer's disease. While Chinese tree shrews (Tupaia belangeri) possess many features suitable for Alzheimer's disease modeling, behavioral tests for assessing spatial cognition in this species are lacking. Here, we established reward-based paradigms using the radial-arm maze and cheeseboard maze for tree shrews, and tested spatial memory in a group of 12 adult males in both tasks, along with a control water maze test, before and after bilateral lesions to the hippocampus, the brain region essential for spatial navigation. Tree shrews memorized target positions during training, and task performance improved gradually until reaching a plateau in all 3 mazes. However, spatial learning was compromised post-lesion in the 2 newly developed tasks, whereas memory retrieval was impaired in the water maze task. These results indicate that the cheeseboard task effectively detects impairments in spatial memory and holds potential for monitoring progressive cognitive decline in aged or genetically modified tree shrews that develop Alzheimer's disease-like symptoms. This study may facilitate the utilization of tree shrew models in Alzheimer's disease research.


Assuntos
Doença de Alzheimer , Tupaia , Humanos , Masculino , Animais , Adulto , Idoso , Tupaiidae , Memória Espacial , Musaranhos , Aprendizagem em Labirinto , Modelos Animais de Doenças
2.
J Virol ; 95(16): e0002021, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076481

RESUMO

The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews (Tupaia belangeri chinensis), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectible to X4-tropic HIV-1IIIB, suggesting that tree shrew CXCR4 is a functional HIV-1 coreceptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10- to 1,000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif) but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional coreceptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.


Assuntos
Desaminases APOBEC/metabolismo , Antígenos CD4/metabolismo , HIV-1/fisiologia , Receptores CCR5/metabolismo , Tupaia/virologia , Replicação Viral , Desaminases APOBEC/genética , Animais , Células Cultivadas , HIV-1/genética , Humanos , Glicoproteínas de Membrana/genética , Modelos Animais , Receptores CXCR4/metabolismo , Proteínas Recombinantes/genética , Proteínas do Envelope Viral/genética , Integração Viral
3.
Addict Biol ; 26(6): e13053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33987939

RESUMO

The progressively increased motivation for cocaine during abstinence is closely associated with the dysfunction of dopamine (DA) system. As DA receptors also dynamically regulate L-type calcium channels (LTCCs), in this study we examined how DA receptors (D1R or D2R) and LTCCs (Cav 1.2 or Cav 1.3) exert their influences on cocaine-seeking in a tree shrew (Tupaia belangeri chinensis) model. First, we demonstrated the 'incubation' effect by showing tree shrews exhibited a significantly higher seeking behaviour on withdrawal day (WD) 45 than on WD1. Then, we confirmed that longer abstinence period induced higher D1R expression in the nucleus accumbens (NAc). Next, we showed that LTCCs in the NAc participated in drug seeking. Moreover, Cav 1.2 expression in the NAc was increased on WD45, and disruption of the Cav 1.2 inhibited drug seeking. Finally, we found that D1R antagonist blocked the increase of Cav 1.2 on drug-seeking test. Collectively, these findings suggest that D1R-mediated upregulation of Cav 1.2 is involved in the incubation of cocaine craving.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Corpo Estriado/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Receptores de Dopamina D1/metabolismo , Animais , Masculino , Motivação , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Autoadministração , Fatores de Tempo , Tupaiidae , Regulação para Cima
4.
Exp Eye Res ; 180: 250-259, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593786

RESUMO

We describe an analysis strategy to obtain ultrasonography-matched axial dimensions of small animal eyes using the LenStar biometer. The LenStar optical low-coherence reflectometer is an attractive device for animal research due to its high precision, non-invasiveness, and the ability to measure the axial dimensions of cornea, anterior chamber, lens, vitreous chamber, and axial length. However, this optical biometer was designed for clinical applications in human eyes and its internal analysis provides inaccurate values when used on small eyes due to species-dependent differences in refractive indices and relative axial dimensions. The LenStar uses a near infrared light source to measure optical path lengths (OPLs) that are converted by the LenStar's EyeSuite software into geometrical lengths (GLs) based on the refractive indices and axial dimensions of the human eye. We present a strategy that extracts the OPLs, determines refractive indices specific for the small animal eye of interest and then calculates corrected GLs. The refractive indices are obtained by matching the LenStar values to ultrasonography values in the same eyes. As compared to ultrasounography, we found that the internal calculations of the LenStar underestimate the axial dimensions of all ocular compartments of the tree shrew eye: anterior segment depth by 6.17±4.50%, lens thickness by 1.37±3.06%, vitreous chamber depth by 29.23±2.35%, and axial length by 10.62±1.75%. Using tree shrew-specific refractive indices, the axial dimensions closely matched those measured by ultrasonography for each compartment. Our analysis strategy can be easily translated to other species by obtaining a similar paired data set using ultrasonography and LenStar, and applying our step by step procedures.


Assuntos
Câmara Anterior/anatomia & histologia , Comprimento Axial do Olho/anatomia & histologia , Biometria/instrumentação , Córnea/anatomia & histologia , Cristalino/anatomia & histologia , Ultrassonografia/instrumentação , Corpo Vítreo/anatomia & histologia , Animais , Reprodutibilidade dos Testes , Tupaiidae
5.
Exp Eye Res ; 185: 107689, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175860

RESUMO

Spontaneous retinal venous pulsations (SRVPs), pulsations of branches of the central retinal vein, are affected by intraocular pressure (IOP) and intracranial pressure (ICP) and thus convey potentially-useful information about ICP. However, the exact relationship between SRVPs, IOP, and ICP is unknown. It is not easily feasible to study this relationship in humans, necessitating the use of an animal model. We here propose tree shrews as a suitable animal model to study the complex relationship between SRVPs, IOP, and ICP. Tree shrew SRVP incidence was determined in a population of animals. Following validation of a modified IOP control system to accurately and quickly control IOP, IOP and/or ICP were manipulated in two tree shrews with SRVPs and the effects on SRVP properties were quantified. SRVPs were present in 75% of tree shrews at physiologic IOP and ICP. Altering IOP or ICP produced changes in tree shrew SRVP properties; specifically, increasing IOP caused SRVP amplitude to increase, while increasing ICP caused SRVP amplitude to decrease. In addition, a higher IOP was necessary to generate SRVPs at a higher ICP than at a lower ICP. SRVPs occur with a similar incidence in tree shrews as in humans, and tree shrew SRVPs are affected by changes in IOP and ICP in a manner qualitatively similar to that reported in humans. In view of anatomic similarities, tree shrews are a promising animal model system to further study the complex relationship between SRVPs, IOP, and ICP.


Assuntos
Modelos Animais de Doenças , Hipertensão Intracraniana/fisiopatologia , Hipertensão Ocular/fisiopatologia , Fluxo Pulsátil/fisiologia , Veia Retiniana/fisiologia , Animais , Feminino , Humanos , Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Masculino , Tomografia de Coerência Óptica , Tupaia , Gravação em Vídeo
6.
Metab Brain Dis ; 33(6): 1961-1974, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30105614

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disorder which can contribute to memory loss and cognitive damage in the elderly; moreover, evidence from clinical and animal studies demonstrated that AD always exhibit severe cognitive deficits. However, the effects of donepezil medications on cognition are controversial. Additionally, it is unclear whether donepezil can protect neurons to improve cognitive function through the brain-derived neurotropic factor (BDNF)/tyrosine receptor kinase B (TrkB) signalling pathway in the tree shrew (TS), which has a closer evolutionary relationship to primates than rodents. Here, we designed a study on an amyloid-ß1-40 (Aß1-40)-induced TS model of AD and investigated the molecular mechanism by which donepezil protects neurons and improves cognitive function through activating the BDNF/TrkB signalling pathway. The results showed that donepezil could rescue Aß1-40-induced spatial cognition deficits, and reverse Aß1-40-induced temporal horn along with ADC enlargement in the TS brain. Meanwhile, it suppressed Aß1-40-induced neuronal damage and loss of body weight. Intriguingly, donepezil could increase the choline acetyl transferase (ChAT) expression level and reduce the fibrillary acid protein (GFAP) expression level in the hippocampus and cortex of TS. Additionally, donepezil significantly upregulated the expression level of BDNF, as well as the phosphorylated level of TrkB. These results suggested that donepezil could protect neurocytes from senility and ameliorate learning and memory impairment in the TS model of AD, which appeared to be through regulating the cholinergic system and inhibiting the BDNF/TrkB-dependent signalling pathway. Moreover, the study underlines the potency of TS to be a novel animal model for research on AD, and it deserves intensive attention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Donepezila/uso terapêutico , Fragmentos de Peptídeos/toxicidade , Receptor trkB/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Donepezila/farmacologia , Masculino , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tupaiidae
7.
Virol J ; 14(1): 193, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985762

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is closely associated with many human diseases, including a variety of deadly human malignant tumours. However, due to the lack of ideal animal models,the biological characteristics of EBV, particularly its function in tumourigenesis, have not been determined. Chinese tree shrews (Tupaia belangeri chinensis), which are similar to primates, have been used to establish a variety of animal models and have recently received much attention. Here, we established tree shrews as a model for EBV infection by intravenous injection. METHODS: Ten tree shrews were inoculated with EBV by intravenous injection,and blood was collected at regular intervals thereafter from the femoral artery or vein to detect EBV markers. RESULTS: Eight of 10 tree shrews showed evidence of EBV infection. In the 8 EBV-infected tree shrews, EBV copy number increased intermittently or transiently, EBV-related gene expression was detected, and anti-EBV antibodies increased to varying degrees. Macroscopic hepatomegaly was observed in 1 tree shrew, splenomegaly was observed in 4 tree shrews, and enlarged mesenteric lymph nodes were observed in 3 tree shrews. Haematoxylin and eosin (HE) staining showed splenic corpuscle hyperplasia in the spleens of 4 tree shrews and inflammatory cell infiltration of the liver of 1 tree shrew and of the mesenteric lymph nodes of 3 tree shrews. EBER in situ hybridization(ISH) and immunohistochemical (IHC) staining showed that EBER-, LMP1- and EBNA2- positive cells were present in the spleens and mesenteric lymph nodes of some tree shrews. Western blotting (WB) revealed EBNA1-positive cells in the spleens of 4 tree shrews. EBV markers were not detected by HE, EBER-ISH or IHC in the lung or nasopharynx. CONCLUSIONS: These findings suggest that EBV can infect tree shrews via intravenous injection. The presented model offers some advantages for exploring the pathophysiology of EBV infection in humans.


Assuntos
Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Tupaiidae/virologia , Administração Intravenosa , Animais , Infecções por Vírus Epstein-Barr/virologia , Viremia
8.
Artigo em Inglês | MEDLINE | ID: mdl-26476437

RESUMO

BACKGROUND: Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3ß-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3ß-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. METHODS: During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. RESULTS: We found that treatment with 3ß-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3ß-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3ß-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. CONCLUSIONS: Taken together, these data strongly suggest a potent antidepressant-like effect of 3ß-methoxypregnenolone on translational parameters.


Assuntos
Antidepressivos/farmacologia , Pregnenolona/análogos & derivados , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , Administração Oral , Animais , Antidepressivos/sangue , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hidrocortisona/urina , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Norepinefrina/urina , Pregnenolona/sangue , Pregnenolona/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia , Comportamento Social , Tubulina (Proteína)/metabolismo , Tupaiidae
9.
Xenotransplantation ; 22(6): 468-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26589781

RESUMO

UNLABELLED: Since α-1,3-galactosyltransferase knockout (GalT-KO) pigs became available, there has been an increasing interest in non-Gal natural antibody (nAb)-mediated xenograft rejection. To better understand mechanisms of non-Gal nAb-mediated rejection, a simple small animal model without gene manipulation would be extremely valuable. Here, we tested whether the Chinese tree shrew (CTS), which is a small-sized mammal that is phylogenetically close to primates, could serve as a model for discordant xenograft rejection. METHODS: Study 1: Expression of α-Gal antigens in hearts and kidneys of CTSs and rats was assessed by IB4 lectin binding. Presence of anti-Gal and anti-non-Gal IgM and IgG nAb in CTS sera was tested by FACS using Gal+ and GalTKO PBMC as well as BSA-ELISA. Study 2: Rat hearts were transplanted into CTS recipients (group 1, n = 7), and CTS hearts were transplanted in rats [n = 10; seven received no immunosuppression (group 2) and three received FK506 + leflunomide (group 3)]. RESULTS: Study 1: Both CTSs and rats had α-Gal expression in hearts and kidneys. ELISA showed CTSs do not have anti-Gal nAb, and flow cytometry indicated CTSs have anti-non-Gal IgM and IgG nAb in serum. Study 2: Rat hearts in CTSs were uniformly rejected within 35 mins, while CTS hearts in rats continued beating until day 5 without immunosuppression, and up to day 8 with immunosuppression. CONCLUSION: Rat-to-CTS heart transplantation is a discordant xenotransplant model, CTS-to-Rat heart transplantation is a concordant xenotransplant model. CTSs are valuable small animals to study mechanisms and strategies to avoid non-Gal nAb-mediated xenograft rejection.


Assuntos
Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Transplante de Coração , Xenoenxertos/imunologia , Leucócitos Mononucleares/imunologia , Transplante Heterólogo , Animais , Antígenos/imunologia , Galactosiltransferases/genética , Transplante de Coração/métodos , Terapia de Imunossupressão/métodos , Ratos , Musaranhos , Suínos , Transplante Heterólogo/métodos
10.
Cell Biochem Funct ; 32(5): 453-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24867093

RESUMO

Diabetic nephropathy (DN) is a common microvascular complication of diabetes. We used a new DN model in tree shrews to validate the use of bone-marrow mesenchymal stem cell (BM-MSC) transplantation to treat DN. The DN tree shrew model was established by a high-sugar and high-fat diet and four injections of streptozotocin. 4',6-Diamidino-2-phenylindole labelled BM-MSCs were injected into tree shrews. The DN tree shrew model was successfully established. Blood glucose was significantly increased ( p < 0.01) during the entire experiment. DN tree shrews showed dyslipidemia, insulin resistance and increased 24-h proteinuria. At 21 days after BM-MSC transplantation, glucose and levels of triglycerides, total cholesterol and 24-h urine volume were lower than in tree shrews with DN alone ( p < 0.01) but were still higher than control values ( p < 0.01). Levels of creatinine and urea nitrogen as well as 24-h proteinuria were lower for DN tree shrews with BM-MSCs transplantation than DN alone ( p < 0.05). High-sugar and high-fat diet combined with STZ injection can induce a tree shrew model of DN. BM-MSCs injection can home to damaged kidneys and pancreas, for reduced 24-h proteinuria and improved insulin resistance.


Assuntos
Células da Medula Óssea/citologia , Nefropatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Colesterol/sangue , Creatinina/sangue , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Produtos Finais de Glicação Avançada/sangue , Insulina/sangue , Rim/patologia , Masculino , Pâncreas/patologia , Estreptozocina/toxicidade , Triglicerídeos/sangue , Tupaiidae
11.
Zool Res ; 44(6): 1080-1094, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37914523

RESUMO

Tree shrews ( Tupaia belangeri chinensis) share a close relationship to primates and have been widely used in biomedical research. We previously established a spermatogonial stem cell (SSC)-based gene editing platform to generate transgenic tree shrews. However, the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear. Here, we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages. We found that SSCs lost spermatogenesis ability after long-term expansion (>50 passages), as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia (SPG)-derived spermatocytes or spermatids marking spermatogenesis. RNA sequencing (RNA-seq) analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers. Specifically, DNA damage response and repair genes (e.g., MRE11, SMC3, BLM, and GEN1) were down-regulated, whereas genes associated with mitochondrial function (e.g., NDUFA9, NDUFA8, NDUFA13, and NDUFB8) were up-regulated after expansion. The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells. Supplementation with nicotinamide adenine dinucleotide (NAD +) precursor nicotinamide riboside (NR) exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture. Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.


Assuntos
Tupaia , Tupaiidae , Masculino , Animais , Tupaia/genética , Musaranhos , Animais Geneticamente Modificados , Primatas/genética , Células-Tronco
12.
Front Neural Circuits ; 16: 834876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498372

RESUMO

Traditionally, functional representations in early visual areas are conceived as retinotopic maps preserving ego-centric spatial location information while ensuring that other stimulus features are uniformly represented for all locations in space. Recent results challenge this framework of relatively independent encoding of location and features in the early visual system, emphasizing location-dependent feature sensitivities that reflect specialization of cortical circuits for different locations in visual space. Here we review the evidence for such location-specific encoding including: (1) systematic variation of functional properties within conventional retinotopic maps in the cortex; (2) novel periodic retinotopic transforms that dramatically illustrate the tight linkage of feature sensitivity, spatial location, and cortical circuitry; and (3) retinotopic biases in cortical areas, and groups of areas, that have been defined by their functional specializations. We propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual experience, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. Future studies are necessary to discover mechanisms underlying joint encoding of location and functional information, how this relates to behavior, emerges during development, and varies across species.


Assuntos
Evolução Biológica
13.
Brain Struct Funct ; 227(4): 1265-1278, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35118562

RESUMO

Most neurons in the primary visual cortex (V1) of mammals show sharp orientation selectivity and band-pass spatial frequency tuning. Here, we examine whether sharpening of the broad tuning that exists subcortically, namely in the retina and the lateral geniculate nucleus (LGN), underlie the sharper tuning seen for both the above features in tree shrew V1. Since the transition from poor feature selectivity to sharp tuning occurs entirely within V1 in tree shrews, we examined the orientation selectivity and spatial frequency tuning of neurons within individual electrode penetrations. We found that most layer 4 and layer 2/3 neurons in the same cortical column preferred the same stimulus orientation. However, a subset of layer 3c neurons close to the layer 4 border preferred near orthogonal orientations, suggesting that layer 2/3 neurons may inherit the orientation preferences of their layer 4 input neurons and also receive cross-orientation inhibition from layer 3c neurons. We also found that layer 4 neurons showed sharper orientation selectivity at higher spatial frequencies, suggesting that attenuation of low spatial frequency responses by spatially broad inhibition acting on layer 4 inputs to layer 2/3 neurons can enhance both orientation and spatial frequency selectivities. However, in a proportion of layer 2/3 neurons, the sharper tuning of layer 2/3 neurons appeared to arise also or even mainly from inhibition specific to high spatial frequencies acting on the layer 4 inputs to layer 2/3. Overall, our results are consistent with the suggestion that in tree shrews, sharp feature selectivity in layer 2/3 can be established by intracortical mechanisms that sharpen biases observed in layer 4, which are in turn inherited presumably from thalamic afferents.


Assuntos
Tupaia , Córtex Visual , Animais , Corpos Geniculados/fisiologia , Estimulação Luminosa/métodos , Córtex Visual Primário , Tupaiidae , Córtex Visual/fisiologia , Vias Visuais/fisiologia
14.
J Genet Genomics ; 48(7): 631-639, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34362683

RESUMO

The use of tree shrews as experimental animals for biomedical research is a new practice. Several recent studies suggest that tree shrews are suitable for studying cancers, including breast cancer, glioblastoma, lung cancer, and hepatocellular carcinoma. However, the telomeres and the telomerase of tree shrews have not been studied to date. Here, we characterize telomeres and telomerase in tree shrews. The telomere length of tree shrews is approximately 23 kb, which is longer than that of primates and shorter than that of mice, and it is extended in breast tumor tissues according to Southern blot and flow-fluorescence in situ hybridization (FISH) analyses. Tree shrew spleen, bone marrow, testis, ovary, and uterus show high telomerase activities, which are increased in breast tumor tissues by telomeric repeat amplification protocol assays. The telomere length becomes shorter, and telomerase activity decreases with age. The tree shrew TERT and TERC are more highly similar to primates than to rodents. These findings lay a solid foundation for using tree shrews to study aging and cancers.


Assuntos
Telomerase
15.
Comput Biol Chem ; 92: 107474, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33765466

RESUMO

Tree shrews are more closely related to primate animals than rodents in many aspects. In addition, they also possess several advantageous characteristics including small body size, high brain-to-body mass ratio, low cost of feeding and maintenance, short reproductive cycle and life span, which make them promising novel laboratory animals to replace more precious larger primate animals. Testis-specific serine/threonine kinase (Tssk) plays important roles in spermatogenesis and/or the regulation of sperm function. However, studies on Tssk in tree shrews have not been reported yet. In the present study, the full-length sequences of five members of the Tssk family in tree shrews were cloned and their CDS region sequences were analyzed by basic bioinformatics. The phylogenetic tree and prokaryotic protein expression system of Tssk gene of tree shrews were constructed. The mRNA expressions of Tssk genes in 11 tissues/organs from tree shrews were studied. The results showed that: 1. the length of the CDS region of tree shrew Tssk gene for Tssk1B, Tssk2, Tssk3 (variant X1 / X2), Tssk4 (variant X1 / X2) and Tssk6 is 1080bp, 1077bp, 867 / 807bp, 1014 / 984bp, 822bp, respectively, encoding 359, 358, 288/268, 337/327 and 273 amino acids, respectively; the cloned sequences of Tssk genes have been submitted to GenBank with the following accession numbers: KX091161(Tssk1B), KX091162(Tssk2), KX091163(Tssk3 variant X1)/KX091164(Tssk3 variant X2), KX091165(Tssk4variant X1)/KX091166(Tssk4variant X2), KX091160(Tssk6). 2. All tree shrew Tssk proteins distribute in cytoplasm, indicating that they are hydrophilic and non-secretory proteins, with multiple phosphorylation sites of serine and/or threonine. In addition, they are all mixed proteins with similar tertiary structures sharing a highly conserved functional domain of S_TKc (Serine/Threonine protein kinases, catalytic domain). 3.The molecular phylogenetic tree of five Tssk genes in tree shrews indicates that they are neither rodent nor primate animal, but are closely related to primate animals. 4. Five members of the Tssk recombinant proteins in tree shrews were successfully obtained using the constructed prokaryotic protein expression system. 5. Five Tssk genes are specifically expressed in the testis and/or sperm of tree shrews. Additionally, small amount of Tssk1B was expressed in several tissues other than testis and sperm. Limited mRNA levels of Tssk2 and Tssk4 were expressed in the brain, while mRNA of Tssk3 or Tssk6 could only be detected in the testis and sperm. This study will provide fundamental data on reproductive biology of tree shrews, which paves a way for further studying Tssk's biological function in this novel model animal.


Assuntos
Biologia Computacional , DNA Complementar/genética , Tupaiidae/genética , Animais , Clonagem Molecular , Feminino , Masculino
16.
Front Microbiol ; 12: 710067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603235

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi's sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.

17.
Front Endocrinol (Lausanne) ; 12: 799711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046899

RESUMO

Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.


Assuntos
Retinopatia Diabética/fisiopatologia , Modelos Animais de Doenças , Tupaiidae/fisiologia , Animais , Retinopatia Diabética/complicações , Retinopatia Diabética/metabolismo , Eletrorretinografia , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Masculino , Transdução de Sinais
18.
Biology (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943168

RESUMO

Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.

19.
Brain Behav ; 10(2): e01533, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943832

RESUMO

INTRODUCTION: This study aims to establish a methamphetamine (METH)-induced behavioral sensitization model using tree shrews, as well as to measure the protein expression of the dopamine D3 receptor (D3R) and dopamine transporter (DAT). METHODS: Forty tree shrews were equally and randomly divided into four experimental groups: those administered with 1, 2, and 4 mg/kg METH and a control group (treated with an equal amount of normal saline). Each experimental group was repeatedly exposed to METH for nine consecutive days to induce the development of behavioral sensitization, followed by four days of withdrawal (without the METH treatment) to induce the transfer of behavioral sensitization, then given 0.5 mg/kg of METH to undergo the expression of behavioral sensitization. Altered locomotor and stereotypic behaviors were measured daily via open-field experiments during the development and expression stages, and weight changes were also recorded. Then, the Western blot method was used to detect the expression levels of D3R and DAT in three brain regions: the nucleus accumbens, prefrontal cortex, and dorsal striatum 24 hr after the last behavioral test. RESULTS: METH administration augmented motor-stimulant responses and stereotypic behaviors in all experimental groups, and stereotypic behaviors intensified more in the groups treated with 2 and 4 mg/kg METH. Motion distance, speed, and trajectory were significantly elevated in all experimental, however, METH at 4 mg/kg induced more stereotypic behaviors, decreasing these locomotor activities as compared with the 2 mg/kg METH group. 2 and 4 mg/kg METH significantly upregulated and downregulated D3R and DAT expression levels, respectively, in three brain regions, and these changes are more pronounced in 2 mg/kg METH. CONCLUSIONS: These results indicated that this animal model may be used to study the neurobiological mechanisms that underly the development and expression of behavioral sensitization to METH. Deregulated D3R and DAT expression may be involved in the METH-induced behavioral sensitization.


Assuntos
Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Metanfetamina/farmacologia , Receptores de Dopamina D3/metabolismo , Animais , Comportamento Animal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sensibilização do Sistema Nervoso Central , Estimulantes do Sistema Nervoso Central/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia , Tupaiidae
20.
Neurotoxicology ; 77: 145-154, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31987859

RESUMO

PURPOSE: Radiation-induced optic neuropathy (RION) is a serious complication that occurs after radiation therapy of tumors in the vicinity of the optic nerve, yet its mechanism and imaging features are poorly understood. In this study, we employed manganese-enhanced MRI (MEMRI) to assess optic nerve axonal transport in tree shrews and rats after irradiation. MATERIALS AND METHODS: A comparison of normal visual projections in tree shrews and rats was conducted by intravitreal MnCl2 injection followed by MRI. Adult male tree shrews and rats received a total dose of 20 Gy delivered in two fractions (10 Gy per fraction) within 5 days. Longitudinal MEMRI was conducted 5, 10, 20 and 30 weeks after radiation. At the end of observation, motor proteins involved in axonal transport were detected by western blotting, and the axon cytoskeleton was assessed by immunofluorescence. RESULTS: The eyeballs, lens sizes, vitreous volumes, optic nerves and superior colliculi of tree shrews were significantly larger than those of rats on MEMRI (P < 0.05). The Mn2+-enhancement of the optic nerve showed no significant changes at 5 and 10 weeks (P > 0.05) but decreased gradually from 20 to 30 weeks postirradiation (P < 0.05). The enhancement of the superior colliculus gradually decreased from 5 weeks to 30 weeks, and the decrease was most significant at 30 weeks (P < 0.05). The levels of the motor proteins cytoplasmic dynein-1, kinesin-1 and kinesin-2 in the experimental group were significantly decreased (P < 0.05). The immunofluorescence results showed that the α-tubulin, ß-tubulin and SMI 31 levels in the experimental groups and control groups were not significantly different (P > 0.05). CONCLUSION: Tree shrews show great advantages in visual neuroscience research involving MEMRI. The main cause of the decline in axonal transport in RION is an insufficient level of motor protein rather than damage to the axonal cytoskeletal structure. Longitudinal MEMRI can be used to detect changes in axonal transport function and to observe the relatively intact axon structure from the early to late stages after radiation administration.


Assuntos
Transporte Axonal/efeitos da radiação , Imageamento por Ressonância Magnética , Nervo Óptico/efeitos da radiação , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Animais , Aumento da Imagem , Estudos Longitudinais , Masculino , Manganês , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Ratos Sprague-Dawley , Tupaiidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA