Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cell Biochem ; 120(5): 7927-7939, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426565

RESUMO

Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.

2.
Biochem Biophys Res Commun ; 511(4): 806-812, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30837153

RESUMO

Drosophila Trf4-1 (DmTrf4-1) is a polyadenylation polymerase or terminal nucleotidyl transferase (PAP/TENT) that has been reported to add poly(A) tails to snRNAs in nucleus or mRNAs in cytoplasm. Here, we found that the loss of Trf4-1 resulted in the reduction of mRNAs and primary miRNAs (pri-miRNAs) in both Drosophila S2 cells and adult flies. Interestingly, the role of Trf4-1 in transcription is independent of its PAP/TENT activity. Moreover, using the chromatin immunoprecipitation assay, we uncovered that the loss of Trf4-1 led to abnormal RNA polymerase II accumulation and reduced H3K4me3 binding in promoter regions. Thus, our study indicates a positive role of Trf4-1 in the transcription of mRNAs and pri-miRNAs.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , MicroRNAs/genética , Polinucleotídeo Adenililtransferase/genética , RNA Mensageiro/genética , Animais , Linhagem Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Deleção de Genes , Polinucleotídeo Adenililtransferase/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Ativação Transcricional
3.
Fungal Genet Biol ; 111: 47-59, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155068

RESUMO

Phoma medicaginis (syn. Ascochyta medicaginicola Qchen & L. Cai) causes spring black stem and leaf spot, an important disease of alfalfa and annual medics. P. medicaginis forms uninucleate conidia in melanized pycnidia and is genetically tractable using Agrobacterium mediated transformation (ATMT), resulting in random integration of T-DNA that occasionally generates pycnidial mutants. The T-DNA tagged mutant, P265 displayed smaller pycnidia and more aerial hyphae than the wild type. A single T-DNA disrupted a putative noncanonical poly(A) RNA polymerase gene, Pmncpap1, which in yeast interacts with ribonucleotide reductase (RNR). As in yeast mutants, P265 showed sensitivity to hydroxyurea (HU), a RNR inhibitor. To characterize the role of Pmncpap1, targeted ΔPmncpap1 mutants were created using a hygromycin selectable marker flanked by 1 Kbp regions of Pmncpap1. ΔPmncpap1 mutants possessed similar morphological features to those of P265. The plasmid for rescue of PmncPAP1, pCAM-Nat1 (nourseothricin selection) was constructed and used to introduce full-length PmncPAP1 into mutants. Rescued P265 showed partial recovery of wild type and the original T-DNA was lost due to homologous integration. To our knowledge, this is the first ncPAP to be examined in a filamentous fungus.


Assuntos
Ascomicetos/genética , RNA Polimerases Dirigidas por DNA/genética , Proteínas Fúngicas/genética , Ascomicetos/citologia , Ascomicetos/enzimologia , RNA Polimerases Dirigidas por DNA/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Mutagênese , Fenótipo
4.
EMBO Rep ; 16(2): 221-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527408

RESUMO

Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability.


Assuntos
DNA de Cadeia Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
RNA Biol ; 13(4): 455-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26918764

RESUMO

Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.


Assuntos
Citoplasma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Hidrólise
6.
Methods Enzymol ; 673: 425-451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965015

RESUMO

The Ski2-like RNA helicase, Mtr4, plays a central role in nuclear RNA surveillance pathways by delivering targeted substrates to the RNA exosome for processing or degradation. RNA target selection is accomplished by a variety of Mtr4-mediated protein complexes. In S. cerevisiae, the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex prepares substrates for exosomal decay through the combined action of polyadenylation and helicase activities. Biophysical and structural studies of Mtr4 and TRAMP require highly purified protein components. Here, we describe robust protocols for obtaining large quantities of pure, active Mtr4 and Trf4-Air2 from S. cerevisiae. The proteins are recombinantly expressed in E. coli and purified using affinity, ion exchange, hydrophobic exchange and size exclusion chromatography. Care is taken to remove nuclease contamination during the prep. Assembly of TRAMP is achieved by combining individually purified Mtr4 and Trf4-Air2. We further describe a strand displacement assay to characterize Mtr4 helicase unwinding activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/química , RNA Helicases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Methods Mol Biol ; 2062: 491-513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768992

RESUMO

The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Exossomos/metabolismo , RNA/metabolismo , RNA Fúngico/metabolismo , Células Sf9
8.
Methods Mol Biol ; 2062: 237-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768980

RESUMO

The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Poliadenilação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Núcleo Celular/metabolismo , RNA/metabolismo , Estabilidade de RNA/fisiologia
9.
Methods Mol Biol ; 2062: 277-289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768982

RESUMO

In many eukaryotic organisms from yeast to human, the exosome plays an important role in the control of pervasive transcription and in non-coding RNA (ncRNA) processing and quality control by trimming precursor RNAs and degrading aberrant transcripts. In Saccharomyces cerevisiae this function is enabled by the interaction of the exosome with several cofactors: the Nrd1-Nab3 heterodimer and the Trf4-Air2-Mtr4 (TRAMP4) complex. Nrd1 and Nab3 are RNA binding proteins that recognize specific motifs enriched in the target ncRNAs, whereas TRAMP4 adds polyA tails at the 3' end of transcripts and stimulates RNA degradation by the exosome. This chapter provides protocols for the purification of recombinant forms of these exosome cofactors and for the in vitro assessment of their activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Exossomos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , DNA Polimerase Dirigida por DNA/genética , Exossomos/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas Nucleares/genética , Poliadenilação/genética , Estabilidade de RNA/genética , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
10.
FEBS Lett ; 590(17): 2963-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27434818

RESUMO

In yeast, the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex acts as a cofactor for the nuclear exosome to promote degradation of various RNAs. However, the corresponding machinery in mammals is less characterized. We analyzed the interactions of the human TRAMP-like proteins, PAPD5, ZCCHC7, and MTR4, with the nuclear exosome. PAPD5 and ZCCHC7 exhibited mutual interactions in presence of the exosome catalytic subunit RRP6, whereas MTR4 was dispensable for their assembly. Furthermore, the human TRAMP-like proteins were involved in the RRP6-catalyzed turnover of pre-rRNA 5'ETS fragments. These results suggest the significant role for RRP6 in the assembly of TRAMP-like proteins during nucleolar RNA surveillance.


Assuntos
RNA Helicases/metabolismo , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA/genética , Fatores de Transcrição/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , RNA Helicases/genética , RNA Nucleotidiltransferases/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
11.
Enzymes ; 31: 77-95, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-27166441

RESUMO

In order to control and/or enhance the specificity and activity of nuclear surveillance and degradation, exosomes cooperate with the polyadenylation complex called TRAMP. Two forms of TRAMP operate in budding yeast, TRAMP4 and TRAMP5. They oligoadenylate defective or precursor forms of RNAs and promote trimming or complete degradation by exosomes. TRAMPs target a wide variety of nuclear transcripts. The known substrates include the noncoding RNAs originating from pervasive transcription from diverse parts of the yeast genome. Although TRAMP and exosomes can be triggered to a subset of their targets via the RNA-binding complex Nrd1, it is still not completely understood how TRAMP recognizes other aberrant RNAs. The existence of TRAMP-like complexes in other organisms indicates the importance of nuclear surveillance for general cell biology. In this chapter, we review the current understanding of TRAMP function and substrate repertoire. We discuss the advances in TRAMP biochemistry with respect to its catalytic activities and RNA recognition. Finally, we speculate about the possible mechanisms by which TRAMP activates exosomes.

12.
G3 (Bethesda) ; 1(2): 143-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22384326

RESUMO

Spore germination in Saccharomyces cerevisiae is a process in which a quiescent cell begins to divide. During germination, the cell undergoes dramatic changes in cell wall and membrane composition, as well as in gene expression. To understand germination in greater detail, we screened the S. cerevisiae deletion set for germination mutants. Our results identified two genes, TRF4 and ERG6, that are required for normal germination on solid media. TRF4 is a member of the TRAMP complex that, together with the exosome, degrades RNA polymerase II transcripts. ERG6 encodes a key step in ergosterol biosynthesis. Taken together, these results demonstrate the complex nature of germination and two genes important in the process.

13.
Wiley Interdiscip Rev RNA ; 2(3): 362-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21572561

RESUMO

Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.


Assuntos
Processamento de Terminações 3' de RNA/fisiologia , Precursores de RNA/metabolismo , Animais , Endorribonucleases/metabolismo , Exonucleases/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , RNA Polimerase III/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease P/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA