Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
FASEB J ; 38(16): e23884, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39135512

RESUMO

The inhibition of the autophagolysosomal pathway mediated by transcription factor EB (TFEB) inactivation in proximal tubular epithelial cells (TECs) is a key mechanism of TEC injury in diabetic kidney disease (DKD). Acetylation is a novel mechanism that regulates TFEB activity. However, there are currently no studies on whether the adjustment of the acetylation level of TFEB can reduce the damage of diabetic TECs. In this study, we investigated the effect of Trichostatin A (TSA), a typical deacetylase inhibitor, on TFEB activity and damage to TECs in both in vivo and in vitro models of DKD. Here, we show that TSA treatment can alleviate the pathological damage of glomeruli and renal tubules and delay the DKD progression in db/db mice, which is associated with the increased expression of TFEB and its downstream genes. In vitro studies further confirmed that TSA treatment can upregulate the acetylation level of TFEB, promote its nuclear translocation, and activate the expression of its downstream genes, thereby reducing the apoptosis level of TECs. TFEB deletion or HDAC6 knockdown in TECs can counteract the activation effect of TSA on autophagolysosomal pathway. We also found that TFEB enhances the transcription of Tfeb through binding to its promoter and promotes its own expression. Our results, thus, provide a novel therapeutic mechanism for DKD that the alleviation of TEC damage by activating the autophagic lysosomal pathway through upregulating TFEB acetylation can, thus, delay DKD progression.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Nefropatias Diabéticas , Células Epiteliais , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Túbulos Renais Proximais , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Nefropatias Diabéticas/metabolismo , Camundongos , Acetilação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Ácidos Hidroxâmicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857838

RESUMO

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Assuntos
Divisão Celular , Microtúbulos , Simbiose , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Trypanosomatina/fisiologia , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bactérias/metabolismo , Bactérias/genética , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura
3.
BMC Genomics ; 25(1): 788, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148037

RESUMO

BACKGROUND: Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS: To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION: The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.


Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas , Ácidos Indolacéticos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Acetilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histonas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Inibidores de Histona Desacetilases/farmacologia
4.
J Allergy Clin Immunol ; 152(3): 799-806.e6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301411

RESUMO

BACKGROUND: The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE: We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS: Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 

Assuntos
Antiasmáticos , Asma , Humanos , Antiasmáticos/uso terapêutico , Estudo de Associação Genômica Ampla , NF-kappa B/genética , Administração por Inalação , Asma/tratamento farmacológico , Asma/genética , Corticosteroides/uso terapêutico , Genética Humana , Citidina Desaminase , Antígenos de Histocompatibilidade Menor , Proteínas de Transporte/genética
5.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893499

RESUMO

Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 µM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.


Assuntos
Antineoplásicos , Apoptose , Cisplatino , Ácidos Hidroxâmicos , Cisplatino/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/farmacologia , Células A549 , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Acetilação/efeitos dos fármacos , Sinergismo Farmacológico
6.
Cell Mol Neurobiol ; 43(8): 4309-4332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864628

RESUMO

Diabetic encephalopathy (DE) is one of the complications of diabetes mellitus with mild-to-moderate cognitive impairment. Trichostatin A (TSA) has been revealed to show protective effect on central nervous systems in Alzheimer's disease (AD) and hypoxic-ischemic brain injury. However, the effect and molecular mechanism of TSA on cognitive function of DE are unknown. Here, we demonstrated that cognitive function was damaged in diabetic mice versus normal mice and treatment with TSA improved cognitive function in diabetic mice. Proteomic analysis of the hippocampus revealed 174 differentially expressed proteins in diabetic mice compared with normal mice. TSA treatment reversed the expression levels of 111 differentially expressed proteins grouped into functional clusters, including the longevity regulating pathway, the insulin signaling pathway, peroxisomes, protein processing in the endoplasmic reticulum, and ribosomes. Furthermore, protein-protein interaction network analysis of TSA-reversed proteins revealed that UBA52, CAT, RPL29, RPL35A, CANX, RPL37, and PRKAA2 were the main hub proteins. Multiple KEGG pathway-enriched CAT and PRKAA2 levels were significantly decreased in the hippocampus of diabetic mice versus normal mice, which was reversed by TSA administration. Finally, screening for potential similar or ancillary drugs for TSA treatment indicated that HDAC inhibitors ISOX, apicidin, and panobinostat were the most promising similar drugs, and the PI3K inhibitor GSK-1059615, the Aurora kinase inhibitor alisertib, and the nucleophosmin inhibitor avrainvillamide-analog-6 were the most promising ancillary drugs. In conclusion, our study revealed that CAT and PRKAA2 were the key proteins involved in the improvement of DE after TSA treatment. ISOX, apicidin, and panobinostat were promising similar drugs and that GSK-1059615, alisertib, and avrainvillamide-analog-6 were promising ancillary drugs to TSA in the treatment of DE.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Panobinostat , Diabetes Mellitus Experimental/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteômica , Hipocampo
7.
J Periodontal Res ; 58(1): 83-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346011

RESUMO

OBJECTIVE: This study aimed to determine the regulatory mechanism of bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation mediated by humoral factors derived from human periodontal ligament (HPL) cells and human gingival fibroblasts (HGFs). We analyzed histone deacetylase (HDAC) expression and activity involved in BM-MSC differentiation and determined their regulatory effects in co-cultures of BM-MSCs with HPL cells or HGFs. BACKGROUND: BM-MSCs can differentiate into various cell types and can, thus, be used in periodontal regenerative therapy. However, the mechanism underlying their differentiation remains unclear. Transplanted BM-MSCs are affected by periodontal cells via direct contact or secretion of humoral factors. Therefore, their activity is regulated by humoral factors derived from HPL cells or HGFs. METHODS: BM-MSCs were indirectly co-cultured with HPL cells or HGFs under osteogenic or growth conditions and then analyzed for osteogenesis, HDAC1 and HDAC2 expression and activity, and histone H3 acetylation. BM-MSCs were treated with trichostatin A, or their HDAC1 or HDAC2 expression was silenced or overexpressed during osteogenesis. Subsequently, they were evaluated for osteogenesis or the effects of HDAC activity. RESULTS: BM-MSCs co-cultured with HPL cells or HGFs showed suppressed osteogenesis, HDAC1 and HDAC2 expression, and HDAC phosphorylation; however, histone H3 acetylation was enhanced. Trichostatin A treatment remarkably suppressed osteogenesis, decreasing HDAC expression and enhancing histone H3 acetylation. HDAC1 and HDAC2 silencing negatively regulated osteogenesis in BM-MSCs to the same extent as that achieved by indirect co-culture with HPL cells or HGFs. Conversely, their overexpression positively regulated osteogenesis in BM-MSCs. CONCLUSION: The suppressive effects of HPL cells and HGFs on BM-MSC osteogenesis were regulated by HDAC expression and histone H3 acetylation to a greater extent than that mediated by HDAC activity. Therefore, regulation of HDAC expression has prospects in clinical applications for effective periodontal regeneration, mainly, bone regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Histonas/metabolismo , Ligamento Periodontal
8.
Mol Biol Rep ; 50(1): 417-431, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335522

RESUMO

BACKGROUND: Tobacco's PR-1a gene is induced by pathogen attack or exogenous application of salicylic acid (SA). Nucleosome mapping and chromatin immunoprecipitation assay were used to delineate the histone modifications on the PR-1a promoter. However, the epigenetic modifications of the inducible promoter of the PR-1a gene are not fully understood yet. METHODS AND RESULTS: Southern approach was used to scan the promoter of PR-1a to identify presence of nucleosomes, ChIP assays were performed using anti-histones antibodies of repressive chromatin by di- methylated at H3K9 and H4K20 or active chromatin by acetylated H3K9/14 and H4K16 to find epigenetic malleability of nucleosome over core promoter in uninduced or induced state post SA treatment. Class I and II mammalian histone deacetylase (HDAC) inhibitor TSA treatment was used to enhance the expression of PR-1a by facilitating the histone acetylation post SA treatment. Here, we report correlated consequences of the epigenetic modifications correspond to disassembly of the nucleosome (spans from - 102 to + 55 bp, masks TATA and transcription initiation) and repressor complex from core promoter, eventually initiates the transcription of PR-1a gene post SA treatment. While active chromatin marks di and trimethylation of H3K4, acetylation of H3K9 and H4K16 are increased which are associated to the transcription initiation of PR-1a following SA treatment. However, in uninduced state constitutive expression of a negative regulator (SNI1) of AtPR1, suppresses AtPR1 expression by six-fold in Arabidopsis thaliana. Further, we report 50-to-1000-fold increased expression of AtPR1 in uninduced lsd1 mutant plants, up to threefold increased expression of AtPR1 in uninduced histone acetyl transferases (HATs) mutant plants, SNI1 dependent negative regulation of AtPR1, all together our results suggest that inactive state of PR-1a is indeed maintained by a repressive complex. CONCLUSION: The study aimed to reveal the mechanism of transcription initiation of tobacco PR-1a gene in presence or absence of SA. This is the first study that reports nucleosome and repressor complex over core promoter region maintains the inactivation of gene in uninduced state, and upon induction disassembling of both initiates the downstream gene activation process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Nucleossomos/genética , Nucleossomos/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Regiões Promotoras Genéticas/genética , Cromatina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética , Acetilação , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
9.
Mar Drugs ; 21(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976224

RESUMO

The appropriate storage protocol is one of the main limitations of translating tissue engineering technology to commercialized clinical applications. Recently, the development of a chitosan-derived composite scaffold incorporated with bioactive molecules has been reported as an excellent material to repair a critical size bony defect in mice calvaria. This study aims to determine the storage time and appropriate storage temperature of Chitosan/Biphasic Calcium Phosphate/Trichostatin A composite scaffold (CS/BCP/TSA scaffold) in vitro. The mechanical properties and in vitro bioactivity of trichostatin A (TSA) released from CS/BCP/TSA scaffolds in different storage times and temperatures were evaluated. Different storage times (0, 14, and 28 days) and temperatures (-18, 4, and 25 °C) did not affect the porosity, compressive strength, shape memory, and amount of TSA released. However, scaffolds stored at 25 °C and 4 °C were found to lose their bioactivity after 3- and 7-day storage periods, respectively. Thus, the CS/BCP/TSA scaffold should be stored in freezing conditions to preserve the long-term stability of TSA.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/farmacologia , Alicerces Teciduais , Temperatura , Engenharia Tecidual/métodos , Porosidade , Epigênese Genética , Materiais Biocompatíveis/farmacologia
10.
Rev Argent Microbiol ; 55(4): 296-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37296064

RESUMO

Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Assuntos
Ascomicetos , Histonas , Histonas/farmacologia , Histona Desacetilases/farmacologia , Virulência
11.
Zygote ; 30(3): 373-379, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34823620

RESUMO

It has been documented that the inefficacy of round spermatid injection (ROSI) might be caused by abnormal epigenetic modifications. Therefore, this study aimed to evaluate the effect of trichostatin A (TSA) as an epigenetic modifier of preimplantation embryo development in activated ROSI oocytes. Matured oocytes were collected from superovulated female mice. Testes were placed in human tubal fluid medium and masses were then cut into small pieces to disperse spermatogenic cells. Round spermatids were treated with TSA and subsequently injected into oocytes. The expression level of the development-related genes including Oct4, Sox2, Nanog, Dnmt and Hdac transcripts were evaluated using qRT-PCR. Immunohistochemistry was performed to confirm the presence of Oct-4 protein at the blastocyst stage. There was no statistically significant difference in fertilization rate following ROSI/+TSA compared with the non-treated ROSI and intracytoplasmic sperm injection (ICSI) groups. Importantly, TSA treatment increased blastocyst formation from 38% in non-treated ROSI to 68%. The relative expression level of developmentally related genes increased and Dnmt transcripts decreased in ROSI/+TSA-derived embryos, similar to the expression levels observed in the ICSI-derived embryos. In conclusion, our results indicate that spermatid treatment with TSA prior to ROSI would increase the success rate of development to the blastocyst stage and proportion of pluripotent cells.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Animais , Blastocisto , Desenvolvimento Embrionário , Feminino , Ácidos Hidroxâmicos , Masculino , Camundongos , Oócitos , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos , Espermátides/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142211

RESUMO

The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.


Assuntos
Epigenômica , alfa-Galactosidase , Animais , Humanos , alfa-Galactosidase/genética , Animais Geneticamente Modificados , Epigênese Genética , Epitopos , Fibroblastos , Antígenos HLA , Ácidos Hidroxâmicos , Lectinas , Proteômica , RNA Mensageiro , Suínos , Transplante Heterólogo
13.
BMC Cancer ; 21(1): 1316, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879849

RESUMO

BACKGROUND: Overcoming drug resistance is critical for increasing the survival rate of prostate cancer (PCa). Docetaxel is the first cytotoxic chemotherapeutical approved for treatment of PCa. However, 99% of PCa patients will develop resistance to docetaxel within 3 years. Understanding how resistance arises is important to increasing PCa survival. METHODS: In this study, we modeled docetaxel resistance using two PCa cell lines: DU145 and PC3. Using the Passing Attributes between Networks for Data Assimilation (PANDA) method to model transcription factor (TF) activity networks in both sensitive and resistant variants of the two cell lines. We identified edges and nodes shared by both PCa cell lines that composed a shared TF network that modeled changes which occur during acquisition of docetaxel resistance in PCa. We subjected the shared TF network to connectivity map analysis (CMAP) to identify potential drugs that could disrupt the resistant networks. We validated the candidate drug in combination with docetaxel to treat docetaxel-resistant PCa in both in vitro and in vivo models. RESULTS: In the final shared TF network, 10 TF nodes were identified as the main nodes for the development of docetaxel resistance. CMAP analysis of the shared TF network identified trichostatin A (TSA) as a candidate adjuvant to reverse docetaxel resistance. In cell lines, the addition of TSA to docetaxel enhanced cytotoxicity of docetaxel resistant PCa cells with an associated reduction of the IC50 of docetaxel on the resistant cells. In the PCa mouse model, combination of TSA and docetaxel reduced tumor growth and final weight greater than either drug alone or vehicle. CONCLUSIONS: We identified a shared TF activity network that drives docetaxel resistance in PCa. We also demonstrated a novel combination therapy to overcome this resistance. This study highlights the usage of novel application of single cell RNA-sequencing and subsequent network analyses that can reveal novel insights which have the potential to improve clinical outcomes.


Assuntos
Docetaxel/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias da Próstata , Fatores de Transcrição , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Pharmacol Res ; 170: 105751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197911

RESUMO

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Assuntos
Carbamatos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Biogênese de Organelas , Acetilação , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas
15.
Pharmacol Res ; 170: 105743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182132

RESUMO

Nowadays acute myocardial infarction (AMI) is a serious cardiovascular disease threatening the human life and health worldwide. The most effective treatment is to quickly restore coronary blood flow through revascularization. However, timely revascularization may lead to reperfusion injury, thereby reducing the clinical benefits of revascularization. At present, no effective treatment is available for myocardial ischemia/reperfusion injury. Emerging evidence indicates that epigenetic regulation is closely related to the pathogenesis of myocardial ischemia/reperfusion injury, indicating that epigenetics may serve as a novel therapeutic target to ameliorate or prevent ischemia/reperfusion injury. This review aimed to briefly summarize the role of histone modification, DNA methylation, noncoding RNAs, and N6-methyladenosine (m6A) methylation in myocardial ischemia/reperfusion injury, with a view to providing new methods and ideas for the research and treatment of myocardial ischemia/reperfusion injury.


Assuntos
Epigênese Genética , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Metilação de DNA , Histonas/metabolismo , Humanos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Processamento de Proteína Pós-Traducional , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
16.
Pharmacol Res ; 170: 105695, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082029

RESUMO

Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.


Assuntos
Antineoplásicos/farmacologia , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Animais , Desenho de Fármacos , Histona Desacetilase 2/química , Histona Desacetilase 2/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
17.
Pharmacology ; 106(1-2): 60-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33142290

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of trichostatin A (TSA) on cervical cancer and the related mechanisms. METHODS: The HeLa and Caski cervical cancer cell lines were treated with different concentrations of TSA. Cell viability was measured by MTT assays. Cell apoptosis was analysed using flow cytometry. Expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6), protein arginine methyltransferase 5 (PRMT5), and stanniocalcin 1 (STC1) was determined by qRT-PCR and Western blotting. Protein levels of LC3 II/I, beclin1, p62, JNK, and p-JNK were detected by Western blotting. RESULTS: Treatment with TSA significantly decreased HeLa and Caski cell viability and enhanced the apoptosis rate in a dose-dependent manner. TSA markedly elevated beclin1 protein levels and the LC3 II/I ratio and significantly reduced p62 levels in a dose-dependent manner. In addition, TSA (1 µM) significantly suppressed PRMT5 and TRPV6 levels and enhanced STC1 and p-JNK levels. The lysosomal inhibitor bafilomycin-A1 synergistically enhanced the TSA-mediated increase in autophagic flux. Either the overexpression of TRPV6 or the inhibition of JNK signalling markedly enhanced cell viability, inhibited apoptosis, and autophagy and reduced p-JNK levels in TSA-treated cells. The inhibition of STC1 significantly increased TRPV6 protein levels and reduced p-JNK levels. Overexpression of PRMT5 dramatically decreased STC1 and p-JNK protein levels and increased TRPV6 levels. CONCLUSION: TSA suppresses cervical cancer cell proliferation and induces apoptosis and autophagy through regulation of the PRMT5/STC1/TRPV6/JNK axis.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Glicoproteínas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrolídeos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(28): E6640-E6649, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946028

RESUMO

Endosomes have emerged as a central hub and pathogenic driver of Alzheimer's disease (AD). The earliest brain cytopathology in neurodegeneration, occurring decades before amyloid plaques and cognitive decline, is an expansion in the size and number of endosomal compartments. The strongest genetic risk factor for sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4). Previous studies have shown that ApoE4 potentiates presymptomatic endosomal dysfunction and defective endocytic clearance of amyloid beta (Aß), although how these two pathways are linked at a cellular and mechanistic level has been unclear. Here, we show that aberrant endosomal acidification in ApoE4 astrocytes traps the low-density lipoprotein receptor-related protein (LRP1) within intracellular compartments, leading to loss of surface expression and Aß clearance. Pathological endosome acidification is caused by ε4 risk allele-selective down-regulation of the Na+/H+ exchanger isoform NHE6, which functions as a critical leak pathway for endosomal protons. In vivo, the NHE6 knockout (NHE6KO) mouse model showed elevated Aß in the brain, consistent with a causal effect. Increased nuclear translocation of histone deacetylase 4 (HDAC4) in ApoE4 astrocytes, compared with the nonpathogenic ApoE3 allele, suggested a mechanistic basis for transcriptional down-regulation of NHE6. HDAC inhibitors that restored NHE6 expression normalized ApoE4-specific defects in endosomal pH, LRP1 trafficking, and amyloid clearance. Thus, NHE6 is a downstream effector of ApoE4 and emerges as a promising therapeutic target in AD. These observations have prognostic implications for patients who have Christianson syndrome with loss of function mutations in NHE6 and exhibit prominent glial pathology and progressive hallmarks of neurodegeneration.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Endossomos/metabolismo , Epigênese Genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Apolipoproteína E4/genética , Astrócitos/patologia , Ataxia/tratamento farmacológico , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Endossomos/genética , Endossomos/patologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Knockout , Microcefalia/tratamento farmacológico , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Transtornos da Motilidade Ocular/tratamento farmacológico , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/metabolismo , Transtornos da Motilidade Ocular/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360584

RESUMO

Trichostatin A (TSA) is a representative histone deacetylase (HDAC) inhibitor that modulates epigenetic gene expression by regulation of chromatin remodeling in cells. To investigate whether the regulation of chromatin de-condensation by TSA can affect the increase in the efficiency of Cas9 protein-gRNA ribonucleoprotein (RNP) indel formation from plant cells, genome editing efficiency using lettuce and tobacco protoplasts was examined after several concentrations of TSA treatments (0, 0.1, 1 and 10 µM). RNP delivery from protoplasts was conducted by conventional polyethylene glycol (PEG) transfection protocols. Interestingly, the indel frequency of the SOC1 gene from TSA treatments was about 3.3 to 3.8 times higher than DMSO treatment in lettuce protoplasts. The TSA-mediated increase of indel frequency of the SOC1 gene in lettuce protoplasts occurred in a concentration-dependent manner, although there was not much difference. Similar to lettuce, TSA also increased the indel frequency by 1.5 to 1.8 times in a concentration-dependent manner during PDS genome editing using tobacco protoplasts. The MNase test clearly showed that chromatin accessibility with TSA treatments was higher than that of DMSO treatment. Additionally, TSA treatment significantly increased the level of histone H3 and H4 acetylation from lettuce protoplasts. The qRT-PCR analysis showed that expression of cell division-related genes (LsCYCD1-1, LsCYCD3-2, LsCYCD6-1, and LsCYCU4-1) was increased by TSA treatment. These findings could contribute to increasing the efficiency of CRISPR/Cas9-mediated genome editing. Furthermore, this could be applied for the development of useful genome-edited crops using the CRISPR/Cas9 system with plant protoplasts.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Ácidos Hidroxâmicos/farmacologia , Lactuca/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Divisão Celular , Genoma de Planta , Lactuca/efeitos dos fármacos , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Células Vegetais , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Inibidores da Síntese de Proteínas/farmacologia , Protoplastos/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
20.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071322

RESUMO

Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder caused by mutations in CREBBP or EP300 genes encoding CBP/p300 lysine acetyltransferases. We investigated the efficacy of the histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) in ameliorating morphological abnormalities of iPSC-derived young neurons from P149 and P34 CREBBP-mutated patients and hypoexcitability of mature neurons from P149. Neural progenitors from both patients' iPSC lines were cultured one week with TSA 20 nM and, only P149, for 6 weeks with TSA 0.2 nM, in parallel to neural progenitors from controls. Immunofluorescence of MAP2/TUJ1 positive cells using the Skeletonize Image J plugin evidenced that TSA partially rescued reduced nuclear area, and decreased branch length and abnormal end points number of both 45 days patients' neurons, but did not influence the diminished percentage of their neurons with respect to controls. Patch clamp recordings of TSA-treated post-mitotic P149 neurons showed complete/partial rescue of sodium/potassium currents and significant enhancement of neuron excitability compared to untreated replicas. Correction of abnormalities of P149 young neurons was also affected by valproic acid 1 mM for 72 h, with some variation, with respect to TSA, on the morphological parameter. These findings hold promise for development of an epigenetic therapy to attenuate RSTS patients cognitive impairment.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Adolescente , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Criança , Proteína p300 Associada a E1A/genética , Eletroencefalografia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Síndrome de Rubinstein-Taybi/diagnóstico por imagem , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA