Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 32, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279149

RESUMO

BACKGROUND: Animal trypanosomiasis is a major livestock problem due to its socioeconomic impacts in tropical countries. Currently used trypanocides are toxic, expensive, and the parasites have developed resistance to the existing drugs, which calls for an urgent need of new effective and safe chemotherapeutic agents from alternative sources such as medicinal plants. In Ethiopian traditional medicine fresh leaves of Ranunculus multifidus Forsk, are used for the treatment of animal trypanosomiasis. The present study aimed to evaluate the antitrypanosomal activity of the fresh leaves of R. multifidus and its major compound anemonin against Trypanosoma congolense field isolate. METHODS: Fresh leaves of R. multifidus were extracted by maceration with 80% methanol and hydro-distillation to obtain the corresponding extracts. Anemonin was isolated from the hydro-distilled extract by preparative TLC. For the in vitro assay, 0.1, 0.4, 2 and 4 mg/ml of the test substances were incubated with parasites and cessation or drop in motility of the parasites was monitored for a total duration of 1 h. In the in vivo assay, the test substances were administered intraperitoneally daily for 7 days to mice infected with Trypanosoma congolense. Diminazene aceturate and 1% dimethylsulfoxide (DMSO) were used as positive and negative controls, respectively. RESULTS: Both extracts showed antitrypanosomal activity although the hydro-distilled extract demonstrated superior activity compared to the hydroalcoholic extract. At a concentration of 4 mg/ml, the hydro-distilled extract drastically reduced motility of trypanosomes within 20 min. Similarly, anemonin at the same concentration completely immobilized trypanosomes within 5 min of incubation, while diminazene aceturate (28.00 mg/kg/day) immobilized the parasites within 10 min. In the in vivo antitrypanosomal assay, anemonin eliminates parasites at all the tested doses (8.75, 17.00 and 35.00 mg/kg/day) and prevented relapse, while in diminazene aceturate-treated mice the parasites reappeared on days 12 to 14. CONCLUSIONS: The current study demonstrated that the fresh leaves of R. multifidus possess genuine antitrypanosomal activity supporting the use of the plant for the treatment of animal trypanosomiasis in traditional medicine. Furthermore, anemonin appears to be responsible for the activity suggesting its potential as a scaffold for the development of safe and cost effective antitrypanosomal agent.


Assuntos
Furanos , Ranunculus , Tripanossomicidas , Tripanossomíase Africana , Animais , Camundongos , Diminazena/farmacologia , Diminazena/uso terapêutico , Músculos Paraespinais , Extratos Vegetais/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma congolense , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária
2.
Exp Parasitol ; 252: 108588, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499895

RESUMO

In many developing countries, trypanosomosis in animals results in the reduction of livestock productivity. Since trypanosomosis is endemic to rural areas where medical and veterinary infrastructure is underdeveloped, development of affordable and easy-to-maintain drugs for treatment and prophylaxis against trypanosomosis is necessary. To this end, in this study, we evaluated the efficacy of oral administration of ascofuranone (AF), with and without glycerol (GOL), against trypanosomosis, using a mouse model. We used T. congolense IL3000, the most virulent animal-infecting trypanosome, and BALB/c mice in this study. Eight mice were assigned to either of Groups 1-7: non-infected, untreated, AF 10, 20, 30, 50, and 100 mg/kg with or without GOL, respectively. In the experiment with AF administered with GOL, survival rates were 0% in Group 2 (untreated) and Group 3 (AF 10 mg/kg), 37.5% in Group 4 (AF 20 mg/kg) and Group 5 (AF 30 mg/kg), 50% in Group 6 (AF 50 mg/kg), and 100% in Group 7 (AF 100 mg/kg). In groups in which AF was administered without GOL, survival rates were 0% in Group 2 (untreated), Group 3 (AF 10 mg/kg), Group 4 (AF 20 mg/kg), Group 5 (AF 30 mg/kg), and Group 6 (AF 50 mg/kg), and 12.5% in Group 7 (AF 100 mg/kg), with one mouse surviving till the end of the observation period. The results of the analysis showed that survival rates were significantly higher in all groups (Groups 3-7) than in the untreated group (Group 2) (p < 0.05). Furthermore, a comparison of groups with or without GOL at the same AF concentration revealed that the survival rate was significantly higher in the group treated with GOL. These results suggest that the treatment efficacy of AF against animal trypanosomosis caused by T. congolense is greater when co-administered with GOL, and that oral administration of AF could be a new therapeutic strategy for animal African trypanosomosis.

3.
Exp Parasitol ; 252: 108589, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516291

RESUMO

African Animal Trypanosomosis (AAT or Nagana) is a vector-borne disease caused by Trypanosomatidae, genus Trypanosoma. The disease is transmitted by the bite of infected hematophagous insects, mainly tsetse flies but also other blood-sucking insects including stomoxes and tabanids. Although many trypanosome species infect animals, the main agents responsible for this disease with a strong socio-economic and veterinary health impact are Trypanosoma congolense (T. congolense or Tc), Trypanosoma vivax (T.vivax), and to a lesser extent, Trypanosoma brucei brucei (T.brucei brucei or Tbb). These parasites mainly infect livestock, including cattle, in sub-Saharan Africa, with major repercussions in terms of animal productivity and poverty for populations which are often already very poor. As there is currently no vaccine, the fight against the disease is primarily based on diagnosis, treatment and vector control. To develop new tools (particularly therapeutic tools) to fight against the disease, we need to know both the biology and the genes involved in the pathogenicity and virulence of the parasites. To date, unlike for Trypanosoma brucei (T.brucei) or Trypanosoma cruzi (T.cruzi), genome editing tools has been relatively little used to study T. congolense. We present an efficient, reproducible and stable CRISPR-Cas9 genome editing system for use in Tc bloodstream forms (Tc-BSF). This plasmid-free system is based on transient expression of Cas9 protein and the use of a ribonucleoprotein formed by the Cas9 and sgRNA complex. This is the first proof of concept of genome editing using CRISPR-Cas9 ribonucleoproteins on Tc-BSF. This adapted protocol enriches the "toolbox" for the functional study of genes of interest in blood forms of the Trypanosoma congolense. This proof of concept is an important step for the scientific community working on the study of trypanosomes and opens up new perspectives for the control of and fight against animal trypanosomosis.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Animais , Bovinos , Trypanosoma congolense/genética , Sistemas CRISPR-Cas , Edição de Genes , Ribonucleoproteínas/genética , RNA Guia de Sistemas CRISPR-Cas , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária , Trypanosoma/genética , Trypanosoma brucei brucei/genética
4.
Parasitol Res ; 122(1): 113-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36282320

RESUMO

The clinical effect of Trypanosoma congolense infection on Dutch belted (does) rabbits was investigated. Sixteen Dutch belted rabbits weighing between 1.6 and 1.8 kg were grouped into two groups of eight each. Animals were accessed for packed cell volume (PCV), total leucocyte count (TLC), rectal temperature (RT), heart rate (HR), and body weight (BW) before infection as well as 18, 25, and 58 days post inoculation (PI). The level of parasitaemia was estimated on a weekly basis and was graded by number of parasites/field. There was a significant difference (P < 0.05) in the mean PCV between treatment and control groups of the rabbits on all days PI. The other parameters were not significantly different between uninfected controls and treatment group although the rectal temperature fluctuated. The mean PCV of infected rabbits was 36.0 ± 0.53%, 35.3 ± 0.19%, and 28.0 ± 0.89% at days 18, 25, and 58 PI, while for uninfected, the mean PCV was 40.8 ± 0.11%, 41.8 ± 0.19%, and 41.3 ± 0.08% across the same time periods. Parasitaemia was detected at 6th day PI and remained high to the end of the study. The study suggests that the use of haematinics and anti-pyrexia treatments as part of disease management for rabbits would be useful.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Animais , Coelhos , Tripanossomíase Africana/tratamento farmacológico , Hematócrito , Contagem de Leucócitos , Peso Corporal , Parasitemia
5.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834557

RESUMO

African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Animais , Tripanossomíase Africana/parasitologia , Nucleosídeos/uso terapêutico , Tubercidina/uso terapêutico , Adenosina/uso terapêutico , Clonagem Molecular
6.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677679

RESUMO

Propolis is a resin that is gathered by bees from exudates produced by various plants. Its exact chemical composition depends on the plants available near the hive. Bees use propolis to coat the surfaces of the hive, where it acts as an anti-infective. Regardless of the chemical composition of propolis, it is always anti-protozoal, probably because protozoan parasites, particularly Lotmarium passim, are widespread in bee populations. The protozoa Trypanosoma brucei and T. congolense cause disease in humans and/or animals. The existing drugs for treating these diseases are old and resistance is an increasingly severe problem. The many types of propolis present a rich source of anti-trypanosomal compounds-from a material gathered by bees in an environmentally friendly way. In the current work, red Nigerian propolis from Rivers State, Nigeria was tested against T. brucei and T. congolense and found to be highly active (EC50 1.66 and 4.00 µg/mL, respectively). Four isoflavonoids, vestitol, neovestitol, 7-methylvestitol and medicarpin, were isolated from the propolis. The isolated compounds were also tested against T. brucei and T. congolense, and vestitol displayed the highest activity at 3.86 and 4.36 µg/mL, respectively. Activities against drug-resistant forms of T. brucei and T. congolense were similar to those against wild type.


Assuntos
Anti-Infecciosos , Própole , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Humanos , Animais , Própole/farmacologia , Própole/química , Nigéria , Tripanossomíase Africana/tratamento farmacológico
7.
Vet Pathol ; 59(5): 773-781, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656928

RESUMO

Trypanosomosis of the West African Dwarf (WAD) sheep is often neglected due to emphasis on trypanotolerance. Nevertheless, significant pathological changes may occur in tissues of infected WAD sheep. The purpose of this study was to evaluate the brain, pituitary, and adrenal lesions of Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) infections in WAD rams. Fifteen WAD rams were infected intraperitoneally with Tbb or Tc (106 trypanosomes/animal) or were uninfected controls (5 rams per group). Adrenocorticotrophic hormone (ACTH) and cortisol were assayed in serum by enzyme immunoassay technique. The brain, pituitary, and adrenal glands were processed for histopathology. Serum ACTH levels of infected rams were significantly (P < .05) higher than that of controls on days 14 and 70 post infection (PI). Serum cortisol levels of infected rams were significantly (P < .05) higher than that of controls only on day 14 PI. Mortality was 60% in Tbb- and 40% in Tc-infected rams. The brain of the infected groups showed chromatolysis of cortical neurons and Purkinje cells with severe encephalitis. Degenerative, necrotic, and inflammatory changes were seen in the pituitary and adrenal glands of the infected rams. Adrenal corticomedullary ratio was significantly (P < .05) higher in Tc-infected rams than controls. Based on the high mortality levels, likely due to severe encephalitis, the WAD sheep may not be regarded as trypanotolerant.


Assuntos
Encefalite , Doenças da Hipófise , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Hormônio Adrenocorticotrópico , Animais , Encefalite/veterinária , Hidrocortisona , Masculino , Doenças da Hipófise/veterinária , Hipófise , Ovinos , Carneiro Doméstico , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/veterinária
8.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269985

RESUMO

The animal trypanosomiases are infections in a wide range of (domesticated) animals with any species of African trypanosome, such as Trypanosoma brucei, T. evansi, T. congolense, T. equiperdum and T. vivax. Symptoms differ between host and infective species and stage of infection and are treated with a small set of decades-old trypanocides. A complication is that not all trypanosome species are equally sensitive to all drugs and the reasons are at best partially understood. Here, we investigate whether drug transporters, mostly identified in T. b. brucei, determine the different drug sensitivities. We report that homologues of the aminopurine transporter TbAT1 and the aquaporin TbAQP2 are absent in T. congolense, while their introduction greatly sensitises this species to diamidine (pentamidine, diminazene) and melaminophenyl (melarsomine) drugs. Accumulation of these drugs in the transgenic lines was much more rapid. T. congolense is also inherently less sensitive to suramin than T. brucei, despite accumulating it faster. Expression of a proposed suramin transporter, located in T. brucei lysosomes, in T. congolense, did not alter its suramin sensitivity. We conclude that for several of the most important classes of trypanocides the presence of specific transporters, rather than drug targets, is the determining factor of drug efficacy.


Assuntos
Arsenicais , Tripanossomicidas , Trypanosoma congolense , Trypanosoma , Animais , Proteínas de Membrana Transportadoras , Pentamidina/metabolismo , Pentamidina/farmacologia , Suramina/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma congolense/metabolismo
9.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209185

RESUMO

Trypanosomiasis and leishmaniasis are among the major neglected diseases that affect poor people, mainly in developing countries. In Ethiopia, the latex of Aloe rugosifolia Gilbert & Sebsebe is traditionally used for the treatment of protozoal diseases, among others. In this study, the in vitro antitrypanosomal activity of the leaf latex of A. rugosifolia was evaluated against Trypanosoma congolense field isolate using in vitro motility and in vivo infectivity tests. The latex was also tested against the promastigotes of Leishmania aethiopica and L. donovani clinical isolates using alamar blue assay. Preparative thin-layer chromatography of the latex afforded a naphthalene derivative identified as plicataloside (2,8-O,O-di-(ß-D-glucopyranosyl)-1,2,8-trihydroxy-3-methyl-naphthalene) by means of spectroscopic techniques (HRESI-MS, 1H, 13C-NMR). Results of the study demonstrated that at 4.0 mg/mL concentration plicataloside arrested mobility of trypanosomes within 30 min of incubation period. Furthermore, plicataloside completely eliminated subsequent infectivity in mice for 30 days at concentrations of 4.0 and 2.0 mg/mL. Plicataloside also displayed antileishmanial activity against the promastigotes of L. aethopica and L. donovani with IC50 values 14.22 ± 0.41 µg/mL (27.66 ± 0.80 µM) and 18.86 ± 0.03 µg/mL (36.69 ± 0.06 µM), respectively. Thus, plicataloside may be used as a scaffold for the development of novel drugs effective against trypanosomiasis and leishmaniasis.


Assuntos
Aloe/química , Antiprotozoários/farmacologia , Látex/química , Extratos Vegetais/farmacologia , Antiprotozoários/química , Relação Dose-Resposta a Droga , Leishmania/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia
10.
Bioorg Med Chem ; 42: 116253, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130218

RESUMO

African trypanosomiasis is a zoonotic protozoan disease affecting the nervous system. Various natural products reportedly exhibit trypanocidal activity. Naturally occurring 2,5-diphenyloxazoles present in Oxytropis lanata, and their derivatives, were synthesized. The trypanocidal activities of the synthesized compounds were evaluated against Trypanosoma brucei brucei, T. b. gambiense, T. b. rhodesiense, T. congolense, and T. evansi. Natural product 1 exhibited trypanocidal activity against all the species/subspecies of trypanosomes, exhibiting half-maximal inhibitory concentrations (IC50) of 1.1-13.5 µM. Modification of the oxazole core improved the trypanocidal activity. The 1,3,4-oxadiazole (7) and 2,4-diphenyloxazole (9) analogs exhibited potency superior to that of 1. However, these compounds exhibited cytotoxicity in Madin-Darby bovine kidney cells. The O-methylated analog of 1 (12) was non-cytotoxic and exhibited selective trypanocidal activity against T. congolense (IC50 = 0.78 µM). Structure-activity relationship studies of the 2,5-diphenyloxazole analogs revealed aspects of the molecular structure critical for maintaining selective trypanocidal activity against T. congolense.


Assuntos
Produtos Biológicos/farmacologia , Oxazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
11.
Exp Parasitol ; 210: 107845, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004533

RESUMO

Vegetable oils are frequently used as solvents for lipophilic materials; accordingly, the effects of their components should be considered in animal experiments. In this study, the effects of various vegetable oils on the course of Trypanosoma congolense infection were examined in mice. C57BL/6J mice were orally administered four kinds of oils (i.e., coconut oil, olive oil, high oleic safflower oil, and high linoleic safflower oil) with different fatty acid compositions and infected with T. congolense IL-3000. Oil-treated mice infected with T. congolense showed significantly higher survival rates and lower parasitemia than those of control mice. Notably, coconut oil, which mainly consists of saturated fatty acids, delayed the development of parasitemia at the early stage of infection. These results indicated that vegetable oil intake could affect T. congolense infection in mice. These findings have important practical implications; for example, they suggest the potential effectiveness of vegetable oils as a part of the regular animal diet for controlling tropical diseases and indicate that vegetable oils are not suitable solvents for studies of the efficacy of lipophilic agents against T. congolense.


Assuntos
Óleos de Plantas/administração & dosagem , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/dietoterapia , Animais , Peso Corporal/efeitos dos fármacos , Óleo de Coco/administração & dosagem , Óleo de Coco/química , Óleo de Coco/farmacologia , Ingestão de Energia/efeitos dos fármacos , Ácido Linoleico/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/análise , Azeite de Oliva/administração & dosagem , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Parasitemia/prevenção & controle , Óleos de Plantas/classificação , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Óleo de Cártamo/administração & dosagem , Óleo de Cártamo/química , Óleo de Cártamo/farmacologia , Tripanossomíase Africana/prevenção & controle
12.
Exp Parasitol ; 216: 107943, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32598890

RESUMO

The search for novel therapeutic candidates against animal trypanosomiasis is an ongoing scientific endevour because of the negative impacts of the disease to the African livestock industry. In this study, the in vivo therapeutic potentials of phytol toward Trypanosoma congolense infection and the inhibitory effects on trypanosomal sialidase were investigated. Rats were infected with T. congolense and administered daily oral treatment of 50 and 100 mg/kg BW of phytol. Within the first 10 days of the treatment, no antitrypanosomal activity was recorded but a moderate trypanostatic activity was observed from day 17-day 21 pi. However, at 100 mg/kg BW, phytol demonstrated a significant (p < 0.05) ameliorative potentials toward T. congolense-induced host-associated pathological damages such as anaemia, hepatic and renal damages; and the data was comparable to diminazine aceturate. Moreover, the T. congolense caused a significant (p < 0.05) increase in free serum sialic acid level which was significantly (p < 0.05) prevented in the presence of phytol (100 mg/kg BW). In an in vitro analysis, phytol inhibited partially purified T. congolense sialidase using an uncompetitive inhibition pattern with inhibition binding constant of 261.24 µmol/mL. Subsequently, molecular docking revealed that the compound binds to homology modelled trypanosomal sialidase with a binding free energy of -6.7 kcal/mol which was mediated via a single hydrogen bond while Trp324 and Pro274 were the critical binding residues. We concluded that phytol has moderate trypanostatic activity but with a great potential in mitigating the host-associated cellular damages while the anaemia amelioration was mediated, in part, through the inhibition of sialidase.


Assuntos
Antiprotozoários/uso terapêutico , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Fitol/uso terapêutico , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/veterinária , Animais , Antiprotozoários/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gado , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/veterinária , Neuraminidase/química , Neuraminidase/isolamento & purificação , Fitol/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Trypanosoma congolense/enzimologia , Tripanossomíase Africana/tratamento farmacológico
13.
Protein Expr Purif ; 164: 105465, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31377239

RESUMO

The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.


Assuntos
Trypanosoma congolense/enzimologia , Tripanossomíase Africana/parasitologia , Animais , Clonagem Molecular , Gelatinases/genética , Gelatinases/isolamento & purificação , Gelatinases/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trypanosoma congolense/genética , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/tratamento farmacológico
14.
Exp Parasitol ; 201: 49-56, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31029700

RESUMO

Trypanosoma congolense is an important pathogen that wreaks havoc in the livestock industry of the African continent. This study evaluated the in vivo antitrypanosomal activity of geranylacetone and its ameliorative effect on the disease-induced anaemia and organ damages as well as its inhibitory effects against trypanosomal sialidase using in vitro and in silico techniques. Geranylacetone was used to treat T. congolense infected rats, at a dose of 50 and 100 mg/kg BW, for 14 days where it was found to reduce the parasite burden in the infected animals. Moreover, 100 mg/kg BW of geranylacetone significantly (p < 0.05) ameliorated the anaemia, hepatic and renal damages caused by the parasite. This is in addition to the alleviation of the parasite-induced hepatosplenomegaly and upsurge in free serum sialic acid levels in the infected animals which were associated with the observed anaemia amelioration by the compound. Consequently, bloodstream T. congolense sialidase was partially purified on DEAE cellulose column and inhibition kinetic studies revealed that the enzyme was inhibited by geranylacetone via an uncompetitive inhibition pattern. In silico analysis using molecular docking with Autodock Vina indicated that geranylacetone binds to trypanosomal sialidase with a minimum free binding energy of -5.8 kcal/mol which was mediated by 26 different kinds of non-covalent interactions excluding hydrogen bond whilst Asp163 and Phe421 had the highest number of the interactions. The data suggests that geranylacetone has trypanostatic activity and could protect animals against the T. congolense-induced anaemia through the inhibition of sialidase and/or the protection of the parasite-induced hepatosplenomegaly.


Assuntos
Anemia/prevenção & controle , Terpenos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Anemia/tratamento farmacológico , Anemia/parasitologia , Animais , Feminino , Coração/efeitos dos fármacos , Coração/parasitologia , Concentração Inibidora 50 , Rim/efeitos dos fármacos , Rim/parasitologia , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Fígado/patologia , Masculino , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Rubiaceae/química , Baço/efeitos dos fármacos , Baço/parasitologia , Baço/patologia , Terpenos/química , Terpenos/uso terapêutico , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Trypanosoma congolense/enzimologia , Tripanossomíase Africana/complicações , Tripanossomíase Africana/parasitologia
15.
J Vector Borne Dis ; 56(2): 154-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31397391

RESUMO

BACKGROUND & OBJECTIVES: Cattle population is relatively dense in Nasarawa State (Nigeria) particularly in Keffi and its environs, where there are more Hausa/Fulani settlers whose main occupation is farming and herding. Unfortunately, the area is purportedly described as a "horde of tsetse fly species" which transmits trypanosomes that cause severe disease in humans, livestock and wildlife species. This study was targeted at examining trypanosome species prevalent among cattle breeds reared in Keffi metropolis. METHODS: A total of 110 cattle, purely based on availability were screened within five working days for trypanosomes infestation using haematocrit centrifugation technique and buffy coat technique. The breeds of cattle examined included White Fulani (64), Sokoto Gudali (26), N'dama (16) and Muturu (4); reared in Jarmai, Gauta and Keffi North districts of Keffi Local Government Area, Nasarawa State, Nigeria. Data collected were analysed using simple descriptive statistics. RESULTS: It was observed that 18 (16.4%) out of 110 cattle screened were infested with 5 (4.55%) Trypanosoma con- golense and 13 (11.82%) T. vivax. The T. congolense positive cases were 4 (3.64%) in White Fulani and 1(0.91%) in Sokoto Gudali breeds whereas, T. vivax occurrence was 9 (8.18%) in White Fulani breed and 4 (3.64%) in Sokoto Gudali breed. The N'dama and Muturu breeds were absolutely not infested and no mixed infestation was recorded in any of the breeds. INTERPRETATION & CONCLUSION: Trypanosoma vivax and T. congolense are the predominant trypanosome species in the study area affecting mainly Sokoto Gudali and White Fulani breeds. Since, N'dama and Muturu breeds were observed to be trypano-tolerant; intensive breeding strategy, strain upgrading mechanisms and genetic modifications could be adopted to ensure other cattles' survival and prevent disease transmission in the area and beyond.


Assuntos
Testes Sorológicos/veterinária , Trypanosoma/classificação , Tripanossomíase Bovina/diagnóstico , Moscas Tsé-Tsé/parasitologia , Animais , Bovinos , Nigéria/epidemiologia , Trypanosoma vivax , Tripanossomíase Africana , Tripanossomíase Bovina/epidemiologia
16.
Molecules ; 24(2)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642032

RESUMO

Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G2/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes.


Assuntos
Colestanóis/farmacologia , Resistência a Medicamentos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Colestanóis/química , Concentração Inibidora 50 , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Tripanossomicidas/química , Tripanossomíase Africana/tratamento farmacológico
17.
Trop Anim Health Prod ; 51(7): 2091-2094, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30997632

RESUMO

African animal trypanosomiasis is a major cause of mortality and economic losses for the livestock industry in Nigeria. Chemotherapy has been the most reliable option for cattle herders, and the most commonly found drug on the market is diminazene aceturate. To ascertain the long-term efficacy of this compound, we sampled a cattle herd in Ogun State, Nigeria, 2 months after they were treated with diminazene aceturate. The ITS-PCR results revealed 19 positives for trypanosome DNA out of the 79 samples tested (24.1%, 95% CI 16.0-34.5). Seventeen out of the total 19 positives were Trypanosoma congolense (21.5%, 95% CI 13.9-31.8). Mixed infections were also observed. Therefore, the persistence of bovine trypanosomiasis at this Nigerian cattle farm despite treatment could be due to diminazene aceturate resistant trypanosomes being present in the herd.


Assuntos
Diminazena/análogos & derivados , Tripanossomicidas/uso terapêutico , Trypanosoma congolense/genética , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/tratamento farmacológico , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , DNA Intergênico , Diminazena/farmacologia , Resistência a Medicamentos , Fazendas , Nigéria , Reação em Cadeia da Polimerase
18.
BMC Microbiol ; 18(Suppl 1): 163, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470184

RESUMO

BACKGROUND: Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. RESULTS: Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. CONCLUSIONS: We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions.


Assuntos
Enterobacteriaceae/fisiologia , Simbiose , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Fatores Etários , Animais , Meio Ambiente , Feminino , Geografia , Quênia , Masculino , Fatores Sexuais
19.
Parasitol Res ; 116(9): 2407-2415, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28674747

RESUMO

Animal trypanosomosis is a devastating parasitic disease that is of economic importance to livestock production. The infection includes animal African trypanosomosis, surra, and dourine. The treatment is based solely on few compounds that were discovered decades ago and which are associated with severe toxicity. Furthermore, it is likely that the parasite has developed resistance towards them. Thus, there is an urgent need for new, accessible, and less toxic drugs. Azithromycin is an antibiotic with documented efficacy against Toxoplasma, Babesia, and Plasmodium. The current study investigated its effects against animal trypanosomes. An in vitro system was used to determine the trypanocidal effects of azithromycin against Trypanosoma congolense, Trypanosoma brucei brucei, and Trypanosoma evansi, and cytotoxicity in Madin-Darby bovine kidney (MDBK) and NIH 3T3 cells. Furthermore, the trypanocidal effects of azithromycin were investigated in T. congolense-infected mice. In vitro, azithromycin had an IC50 of 0.19 ± 0.17; 3.69 ± 2.26; 1.81 ± 1.82 µg/mL against T. congolense, T. b. brucei, and T. evansi, respectively. No cytotoxic effects were observed in MDBK and NIH 3T3 cells. The efficacy of orally administered azithromycin was investigated in short-term and long-term treatment protocols. Although the short-term treatment protocol showed no curative effects, the survival rate of the mice was significantly prolonged (p < 0.001) in comparison to the control group. The long-term treatment yielded satisfying curative effects with doses of 300 and 400 mg/kg achieving 80 and 100% survival, respectively. In conclusion, long-term oral azithromycin treatment has trypanocidal effects against T. congolense.


Assuntos
Azitromicina/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Administração Oral , Animais , Bovinos , Linhagem Celular , Feminino , Gado , Camundongos , Camundongos Endogâmicos BALB C
20.
Parasitol Res ; 116(11): 2921-2925, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28856450

RESUMO

Canine trypanosomosisis (CT) is a common disease caused by tsetse- and non-tsetse-transmitted trypanosomes worldwide. The severity of the disease varies from acute, sub-acute to chronic with non-specific clinical signs. Here, we attempt in a cross-sectional study to assess the current situation of CT and the role of dogs in transmitting trypanosomes to other domesticated animals. The study was carried out during July 2016 on 50 caged German shepherd dogs in Khartoum State to investigate the prevalence of dog trypanosomosis using both serological (CATT/Trypanosoma evansi) and molecular (KIN-PCR, RoTat1.2 VSG-PCR and TviCatL-PCR) tests to detect possible trypanosome infections. CATT/T. evansi detected antibodies against T. evansi in 15 (30%) dogs, while parasite DNA was detected in 17 (34%) dogs by RoTat1.2 PCR. In contrast, a KIN-PCR detected the subgenus Trypanozoon, Trypanosoma congolense savannah, T. congolense Kenya and T. vivax in 36 (72%), 3 (6%), 1 (2%), and 2 (4%) dogs, respectively. However, a species-specific PCR for Trypanosoma vivax was detected 7 (14%) positive cases. We concluded that CT was caused by at least three species of trypanosomes, namely T. evansi, T. vivax and T. congolense. Trypanozoon other than T. evansi could not be ruled out since other tsetse-transmitted trypanosomes have also been detected and species-specific PCRs were not used. This study illustrates that dogs play an important role in the transmission dynamic and the epidemiology of the abovementioned trypanosome species.


Assuntos
Doenças do Cão/parasitologia , Trypanosoma/classificação , Tripanossomíase/veterinária , Animais , Estudos Transversais , Doenças do Cão/epidemiologia , Doenças do Cão/transmissão , Cães , Reação em Cadeia da Polimerase/veterinária , Prevalência , Especificidade da Espécie , Sudão/epidemiologia , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Trypanosoma congolense/isolamento & purificação , Trypanosoma vivax/isolamento & purificação , Tripanossomíase/epidemiologia , Tripanossomíase/parasitologia , Tripanossomíase/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA