Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37918395

RESUMO

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Anticorpos Antibacterianos/farmacologia , Microscopia Crioeletrônica , Imunoglobulinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/tratamento farmacológico
2.
Cell ; 178(3): 552-566.e20, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31327526

RESUMO

Antibacterial autophagy (xenophagy) is an important host defense, but how it is initiated is unclear. Here, we performed a bacterial transposon screen and identified a T3SS effector SopF that potently blocked Salmonella autophagy. SopF was a general xenophagy inhibitor without affecting canonical autophagy. S. Typhimurium ΔsopF resembled S. flexneri ΔvirAΔicsB with the majority of intracellular bacteria targeted by autophagy, permitting a CRISPR screen that identified host V-ATPase as an essential factor. Upon bacteria-caused vacuolar damage, the V-ATPase recruited ATG16L1 onto bacteria-containing vacuole, which was blocked by SopF. Mammalian ATG16L1 bears a WD40 domain required for interacting with the V-ATPase. Inhibiting autophagy by SopF promoted S. Typhimurium proliferation in vivo. SopF targeted Gln124 of ATP6V0C in the V-ATPase for ADP-ribosylation. Mutation of Gln124 also blocked xenophagy, but not canonical autophagy. Thus, the discovery of SopF reveals the V-ATPase-ATG16L1 axis that critically mediates autophagic recognition of intracellular pathogen.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Bactérias/genética , Macroautofagia , Salmonella/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fatores de Virulência/genética , ADP-Ribosilação , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Salmonella/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Fatores de Virulência/metabolismo
3.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929902

RESUMO

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
4.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423631

RESUMO

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Assuntos
Calmodulina , Caspases , Animais , Calmodulina/genética , Calmodulina/metabolismo , Caspases/metabolismo , Caspase 3/metabolismo , Arginina , Catálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Mol Cell ; 82(10): 1806-1820.e8, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35338844

RESUMO

Caspases are evolutionarily conserved cysteine proteases that are essential for regulating cell death and are involved in multiple development and disease processes, including immunity. Here, we show that the bacterial type III secretion system (T3SS) effector CopC (Chromobacterium outer protein C) from the environmental pathogen Chromobacterium violaceum attacks caspase-3/-7/-8/-9 by ADPR-deacylization to dysregulate programmed cell death, including apoptosis, necroptosis, and pyroptosis. This modification involves ADP-ribosylation- and deamination-mediated cyclization on Arg207 of caspase-3 by a mechanism that requires the eukaryote-specific protein calmodulin (CaM), leading to inhibition of caspase activity. The manipulation of cell death signaling by CopC is essential for the virulence of C. violaceum in a mouse infection model. CopC represents a family of enzymes existing in taxonomically diverse bacteria associated with a wide spectrum of eukaryotes ranging from humans to plants. The unique activity of CopC establishes a mechanism by which bacteria counteract host defenses through a previously unrecognized post-translational modification.


Assuntos
Arginina , Caspases , Animais , Apoptose , Caspase 3 , Caspases/genética , Caspases/metabolismo , Camundongos , Piroptose
6.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713458

RESUMO

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Microscopia Crioeletrônica , Transporte Biológico , Eucariotos
7.
Mol Cell ; 78(4): 641-652.e9, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330457

RESUMO

Ubiquitination is essential for numerous eukaryotic cellular processes. Here, we show that the type III effector CteC from Chromobacterium violaceum functions as an adenosine diphosphate (ADP)-ribosyltransferase that specifically modifies ubiquitin via threonine ADP-ribosylation on residue T66. The covalent modification prevents the transfer of ubiquitin from ubiquitin-activating enzyme E1 to ubiquitin-conjugating enzyme E2, which inhibits subsequent ubiquitin activation by E2 and E3 enzymes in the ubiquitination cascade and leads to the shutdown of polyubiquitin synthesis in host cells. This unique modification also causes dysfunction of polyubiquitin chains in cells, thereby blocking host ubiquitin signaling. The disruption of host ubiquitination by CteC plays a crucial role in C. violaceum colonization in mice during infection. CteC represents a family of effector proteins in pathogens of hosts from different kingdoms. All the members of this family specifically ADP-ribosylate ubiquitin. The action of CteC reveals a new mechanism for interfering with host ubiquitination by pathogens.


Assuntos
ADP-Ribosilação , Proteínas de Bactérias/metabolismo , Chromobacterium/metabolismo , Poliubiquitina/metabolismo , Treonina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/genética , Chromobacterium/genética , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Treonina/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
8.
Mol Cell ; 74(5): 922-935.e6, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979585

RESUMO

Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/química , Interações Hospedeiro-Patógeno/genética , Conformação Proteica , Fatores de Virulência/química , Animais , Apoptose/genética , Arginina/química , Arginina/genética , Coenzima A Ligases/química , Coenzima A Ligases/genética , Cristalografia por Raios X , Domínio de Morte/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Guanidina/química , Humanos , Manganês/química , Camundongos , Mutagênese , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Fatores de Virulência/genética
9.
Proc Natl Acad Sci U S A ; 121(17): e2322363121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640341

RESUMO

Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.


Assuntos
Aurodox , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/metabolismo , Aurodox/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709922

RESUMO

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Assuntos
Proteínas de Bactérias , Bartonella , Sistemas de Secreção Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Transporte Proteico , Animais
11.
Trends Biochem Sci ; 47(9): 795-809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654690

RESUMO

The bacterial injectisome is a structurally conserved, syringe-shaped nanomachine that spans the Gram-negative envelope and forms a continuous channel for type III secretion of protein effectors. The injectisome, and the host-modulating effectors it secretes, are essential for the pathogenesis of several Gram-negative bacterial species, and it is a key virulence factor associated with the progression of many clinical and community-based infectious diseases. The molecular structure of the injectisome has been the focus of intense research efforts over the past 30 years, and during this time significant progress has been made in determining the molecular structures of many components. In this review we present major advances in our structural and mechanistic understanding of the injectisome, as facilitated by cryoelectron microscopy approaches.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Bactérias Gram-Negativas/metabolismo , Fatores de Virulência/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(20): e2303487120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155906

RESUMO

The centrosome is the main microtubule organizing center of the cell and is crucial for mitotic spindle assembly, chromosome segregation, and cell division. Centrosome duplication is tightly controlled, yet several pathogens, most notably oncogenic viruses, perturb this process leading to increased centrosome numbers. Infection by the obligate intracellular bacterium Chlamydia trachomatis (C.t.) correlates with blocked cytokinesis, supernumerary centrosomes, and multipolar spindles; however, the mechanisms behind how C.t. induces these cellular abnormalities remain largely unknown. Here we show that the secreted effector protein, CteG, binds to centrin-2 (CETN2), a key structural component of centrosomes and regulator of centriole duplication. Our data indicate that both CteG and CETN2 are necessary for infection-induced centrosome amplification, in a manner that requires the C-terminus of CteG. Strikingly, CteG is important for in vivo infection and growth in primary cervical cells but is dispensable for growth in immortalized cells, highlighting the importance of this effector protein to chlamydial infection. These findings begin to provide mechanistic insight into how C.t. induces cellular abnormalities during infection, but also indicate that obligate intracellular bacteria may contribute to cellular transformation events. Centrosome amplification mediated by CteG-CETN2 interactions may explain why chlamydial infection leads to an increased risk of cervical or ovarian cancer.


Assuntos
Centrossomo , Chlamydia trachomatis , Feminino , Humanos , Centrossomo/metabolismo , Divisão Celular , Segregação de Cromossomos , Colo do Útero , Fuso Acromático/metabolismo
13.
J Biol Chem ; : 107613, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079629

RESUMO

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein IpaD. Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.

14.
Plant J ; 117(2): 516-540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864805

RESUMO

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Assuntos
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptação ao Hospedeiro , Doenças das Plantas/microbiologia , Citrullus/genética , Aminoácidos
15.
Annu Rev Microbiol ; 74: 221-245, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660389

RESUMO

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.


Assuntos
Citosol/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Sistemas de Secreção Tipo III/imunologia , Yersinia/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Citosol/microbiologia , Humanos , Inflamassomos , Piroptose , Transdução de Sinais , Fatores de Virulência/metabolismo , Yersinia/metabolismo , Yersinia/patogenicidade
16.
Bioessays ; 45(9): e2300078, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329195

RESUMO

The type III secretion system (T3SS) is a specialized nanomachine that enables bacteria to secrete proteins in a specific order and directly deliver a specific set of them, collectively known as effectors, into eukaryotic organisms. The core structure of the T3SS is a syringe-like apparatus composed of multiple building blocks, including both membrane-associated and soluble proteins. The cytosolic components organize together in a chamber-like structure known as the sorting platform (SP), responsible for recruiting, sorting, and initiating the substrates destined to engage this secretion pathway. In this article, we provide an overview of recent findings on the SP's structure and function, with a particular focus on its assembly pathway. Furthermore, we discuss the molecular mechanisms behind the recruitment and hierarchical sorting of substrates by this cytosolic complex. Overall, the T3SS is a highly specialized and complex system that requires precise coordination to function properly. A deeper understanding of how the SP orchestrates T3S could enhance our comprehension of this complex nanomachine, which is central to the host-pathogen interface, and could aid in the development of novel strategies to fight bacterial infections.


Assuntos
Proteínas de Bactérias , Via Secretória , Proteínas de Bactérias/metabolismo , Transporte Proteico , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/metabolismo , Citosol/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(50): e2209383119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469780

RESUMO

Healthcare-associated infections are major causes of complications that lead to extended hospital stays and significant medical costs. The use of medical devices, including catheters, increases the risk of bacterial colonization and infection through the presence of a foreign surface. Two outcomes are observed for catheterized patients: catheter-associated asymptomatic bacteriuria and catheter-associated urinary tract infection (CAUTI). However, the relationship between these two events remains unclear. To understand this relationship, we studied a murine model of Pseudomonas aeruginosa CAUTI. In this model, we also observe two outcomes in infected animals: acute symptoms that is associated with CAUTI and chronic colonization that is associated with asymptomatic bacteriuria. The timing of the acute outcome takes place in the first week of infection, whereas chronic colonization occurs in the second week of infection. We further showed that mutants lacking genes encoding type III secretion system (T3SS), T3SS effector proteins, T3SS injection pore, or T3SS transcriptional activation all fail to cause acute symptoms of CAUTI. Nonetheless, all mutants defective for T3SS colonized the catheter and bladders at levels similar to the parental strain. In contrast, through induction of the T3SS master regulator ExsA, all infected animals showed acute phenotypes with bacteremia. Our results demonstrated that the acute symptoms, which are analogous to CAUTI, and chronic colonization, which is analogous to asymptomatic bacteriuria, are independent events that require distinct bacterial virulence factors. Experimental delineation of asymptomatic bacteriuria and CAUTI informs different strategies for the treatment and intervention of device-associated infections.


Assuntos
Bacteriúria , Infecções Urinárias , Camundongos , Animais , Pseudomonas aeruginosa/genética , Bacteriúria/complicações , Infecções Urinárias/microbiologia , Sistemas de Secreção Tipo III , Catéteres/efeitos adversos
18.
J Biol Chem ; 299(4): 104591, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894018

RESUMO

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais , Ácido Quenodesoxicólico , Proteínas de Bactérias/metabolismo
19.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734623

RESUMO

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Assuntos
Actinidia , Genoma Bacteriano , Genômica , Filogenia , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , China , Actinidia/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia
20.
Mol Microbiol ; 119(2): 161-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36196760

RESUMO

Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form "attaching and effacing" lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Animais , Camundongos , Fatores de Virulência/metabolismo , Células HeLa , Glicosilação , Proteínas de Escherichia coli/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA