RESUMO
U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Assuntos
Ribonucleoproteína Nuclear Pequena U7 , Ribonucleoproteínas Nucleares Pequenas , Animais , Ribonucleoproteína Nuclear Pequena U7/química , Metilação , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Histonas/metabolismo , Arginina/químicaRESUMO
CPSF73 is the endonuclease that catalyzes the cleavage reaction for 3'-end processing of mRNA precursors (pre-mRNAs) in two distinct machineries, a canonical machinery for the majority of pre-mRNAs and a U7 snRNP (U7 machinery) for replication-dependent histone pre-mRNAs in animal cells. CPSF73 also possesses 5'-3' exonuclease activity in the U7 machinery, degrading the downstream cleavage product after the endonucleolytic cleavage. Recent studies show that CPSF73 is a potential target for developing anticancer, antimalarial, and antiprotozoal drugs, spurring interest in identifying new small-molecule inhibitors against this enzyme. CPSF73 nuclease activity has so far been demonstrated using a gel-based end-point assay, using radiolabeled or fluorescently labeled RNA substrates. By taking advantage of unique properties of the U7 machinery, we have developed a novel, real-time fluorescence assay for the nuclease activity of CPSF73. This assay is facile and high-throughput, and should also be helpful for the discovery of new CPSF73 inhibitors.
Assuntos
Bioensaio , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Histonas/metabolismo , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Sistema Livre de Células , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/genética , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fluorescência , Corantes Fluorescentes/química , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Proteólise , Precursores de RNA/química , Precursores de RNA/genética , Rodaminas/química , Ribonucleoproteína Nuclear Pequena U7/química , Ribonucleoproteína Nuclear Pequena U7/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , RNA Nuclear Pequeno/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Quimiocina CXCL10/genética , Histonas , Humanos , Interferons , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the ß-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.
Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Endonucleases/genética , Exonucleases/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Animais , Histonas/genética , Camundongos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genéticaRESUMO
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a â¼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Assuntos
Histonas/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Animais , Humanos , Hidrólise , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismoRESUMO
Cleavage of histone pre-mRNAs at the 3' end requires stem-loop binding protein (SLBP) and U7 snRNP that consists of U7 snRNA and a unique Sm ring containing two U7-specific proteins: Lsm10 and Lsm11. Lsm11 interacts with FLASH and together they bring a subset of polyadenylation factors to U7 snRNP, including the CPSF73 endonuclease that cleaves histone pre-mRNA. SLBP binds to a conserved stem-loop structure upstream of the cleavage site and acts by promoting an interaction between the U7 snRNP and a sequence element located downstream from the cleavage site. We show that both human and Drosophila SLBPs stabilize U7 snRNP on histone pre-mRNA via two regions that are not directly involved in recognizing the stem-loop structure: helix B of the RNA binding domain and the C-terminal region that follows the RNA binding domain. Stabilization of U7 snRNP binding to histone pre-mRNA by SLBP requires FLASH but not the polyadenylation factors. Thus, FLASH plays two roles in 3' end processing of histone pre-mRNAs: It interacts with Lsm11 to form a docking platform for the polyadenylation factors, and it cooperates with SLBP to recruit U7 snRNP to histone pre-mRNA.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Histonas/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismoRESUMO
BACKGROUND: Core canonical histones are required in the S phase of the cell cycle to pack newly synthetized DNA, therefore the expression of their genes is highly activated during DNA replication. In mammalian cells, this increment is achieved by both enhanced transcription and 3' end processing. In this paper, we described positive cofactor 4 (PC4) as a protein that contributes to the regulation of replication-dependent histone gene expression. RESULTS: We showed that PC4 influences RNA polymerase II recruitment to histone gene loci in a cell cycle-dependent manner. The most important effect was observed in S phase where PC4 knockdown leads to the elevated level of RNA polymerase II on histone genes, which corresponds to the increased total level of those gene transcripts. The opposite effect was caused by PC4 overexpression. Moreover, we found that PC4 has a negative effect on the unique 3' end processing of histone pre-mRNAs that can be based on the interaction of PC4 with U7 snRNP and CstF64. Interestingly, this effect does not depend on the cell cycle. CONCLUSIONS: We conclude that PC4 might repress RNA polymerase II recruitment and transcription of replication-dependent histone genes in order to maintain the very delicate balance between histone gene expression and DNA synthesis. It guards the cell from excess of histones in S phase. Moreover, PC4 might promote the interaction of cleavage and polyadenylation complex with histone pre-mRNAs, that might impede with the recruitment of histone cleavage complex. This in turn decreases the 3' end processing efficiency of histone gene transcripts.
Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular , Fator Estimulador de Clivagem/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Processamento de Terminações 3' de RNA , Ribonucleoproteína Nuclear Pequena U7/metabolismoRESUMO
3'-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3'-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3'-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF Im-are present in Drosophila nuclear extracts in a stable supercomplex.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/genética , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Clivagem do RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismoRESUMO
Histone pre-mRNAs are cleaved at the 3' end by a complex that contains U7 snRNP, the FLICE-associated huge protein (FLASH) and histone pre-mRNA cleavage complex (HCC) consisting of several polyadenylation factors. Within the complex, the N terminus of FLASH interacts with the N terminus of the U7 snRNP protein Lsm11, and together they recruit the HCC. FLASH through its distant C terminus independently interacts with the C-terminal SANT/Myb-like domain of nuclear protein, ataxia-telangiectasia locus (NPAT), a transcriptional co-activator required for expression of histone genes in S phase. To gain structural information on these interactions, we used mass spectrometry to monitor hydrogen/deuterium exchange in various regions of FLASH, Lsm11 and NPAT alone or in the presence of their respective binding partners. Our results indicate that the FLASH-interacting domain in Lsm11 is highly dynamic, while the more downstream region required for recruiting the HCC exchanges deuterium slowly and likely folds into a stable structure. In FLASH, a stable structure is adopted by the domain that interacts with Lsm11 and this domain is further stabilized by binding Lsm11. Notably, both hydrogen/deuterium exchange experiments and in vitro binding assays demonstrate that Lsm11, in addition to interacting with the N-terminal region of FLASH, also contacts the C-terminal SANT/Myb-like domain of FLASH, the same region that binds NPAT. However, while NPAT stabilizes this domain, Lsm11 causes its partial relaxation. These competing reactions may play a role in regulating histone gene expression in vivo.