Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245639

RESUMO

Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.

2.
Plant J ; 114(3): 613-635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799458

RESUMO

As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Acetilglucosamina/metabolismo , Proteínas/metabolismo , Glicosilação , Fosfatos/metabolismo , Processamento de Proteína Pós-Traducional
3.
New Phytol ; 243(3): 936-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831647

RESUMO

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Assuntos
Proteínas de Bactérias , Carbono , Glicosiltransferases , Synechocystis , Uridina Difosfato N-Acetilglicosamina , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Carbono/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
4.
Pharmacol Res ; 202: 107120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417774

RESUMO

Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Humanos , Acetilglucosamina/metabolismo , Nutrientes , Autofagia/fisiologia
5.
Biochem J ; 480(15): 1147-1164, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498748

RESUMO

Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.


Assuntos
Peptidoglicano , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Glucosamina/metabolismo , Fosfatos , Difosfato de Uridina
6.
J Autoimmun ; 140: 103112, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742509

RESUMO

Transaldolase deficiency predisposes to chronic liver disease progressing from cirrhosis to hepatocellular carcinoma (HCC). Transition from cirrhosis to hepatocarcinogenesis depends on mitochondrial oxidative stress, as controlled by cytosolic aldose metabolism through the pentose phosphate pathway (PPP). Progression to HCC is critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Although AR inactivation blocked susceptibility to hepatocarcinogenesis, it enhanced growth restriction, carbon trapping in the non-oxidative branch of the PPP and failed to reverse the depletion of glucose 6-phosphate (G6P) and liver cirrhosis. Here, we show that inactivation of the TAL-AR axis results in metabolic stress characterized by reduced mitophagy, enhanced overall autophagy, activation of the mechanistic target of rapamycin (mTOR), diminished glycosylation and secretion of paraoxonase 1 (PON1), production of antiphospholipid autoantibodies (aPL), loss of CD161+ NK cells, and expansion of CD38+ Ito cells, which are responsive to treatment with rapamycin in vivo. The present study thus identifies glycosylation and secretion of PON1 and aPL production as mTOR-dependent regulatory checkpoints of autoimmunity underlying liver cirrhosis in TAL deficiency.

7.
Metab Eng ; 70: 55-66, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033656

RESUMO

Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.


Assuntos
Bacillus subtilis , Engenharia Metabólica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Quitina/genética , Quitina/metabolismo , Quitosana , Engenharia Metabólica/métodos , Oligossacarídeos
8.
Cell Commun Signal ; 20(1): 48, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392915

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARγ) is an enhancer of Treg responses, but the mechanisms remain elusive. This study aimed to solve this problem in view of cellular metabolism. METHODS: Three recognized PPARγ agonists (synthetic agonist: rosiglitazone; endogenous ligand: 15d-PGJ2; natural product: morin) were used as the tools to activate PPARγ. The fatty acid oxidation (FAO) was evaluated through the detection of fatty acid uptake, oxygen consumption rate, mitochondrial mass, mitochondrial membrane potential and acetyl-CoA level. The involvement of UDP-GlcNAc/N-linked glycosylation axis and the exact role of PPARγ in the action of PPARγ agonists were determined by flow cytometry, Q-PCR, western blotting, a commercial kit for enzyme activity and CRISPR/Cas9-mediated knockout. RESULTS: Rosiglitazone, 15d-PGJ2 and morin all increased the frequency of CD4+Foxp3+ Treg cells generated from naïve CD4+ T cells, boosted the transcription of Foxp3, IL-10, CTLA4 and TIGIT, and facilitated the function of Treg cells. They significantly promoted FAO in differentiating Treg cells by up-regulating the levels of CD36 and CPT1 but not other enzymes involved in FAO such as ACADL, ACADM, HADHA or HADHB, and siCD36 or siCPT1 dampened PPARγ agonists-promoted Treg responses. Moreover, PPARγ agonists enhanced UDP-GlcNAc biosynthesis and subsequent N-linked glycosylation, but did not affect the expressions of N-glycan branching enzymes Mgat1, 2, 4 and 5. Notably, the enzyme activity of phosphofructokinase (PFK) was inhibited by PPARγ agonists and the effect was limited by siCD36 or siCPT1, implying PFK to be a link between PPARγ agonists-promoted FAO and UDP-GlcNAc biosynthesis aside from acetyl-CoA. Furthermore, PPARγ agonists facilitated the cell surface abundance of TßRII and IL-2Rα via N-linked glycosylation, thereby activating TGF-ß/Smads and IL-2/STAT5 signaling, and the connection between N-linked glycosylation and Treg responses was revealed by tunicamycin. However, the increased surface abundance of CD36 was demonstrated to be mainly owing to PPARγ agonists-up-regulated overall expression. Finally, PPARγ antagonist GW9662 or CRISPR/Cas9-mediated knockout of PPARγ constrained the effects of rosiglitazone, 15d-PGJ2 and morin, confirming the exact role of PPARγ. CONCLUSIONS: The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TßRII/IL-2Rα, which is beneficial for inflammatory and autoimmune diseases. Video Abstract.


Assuntos
PPAR gama , Linfócitos T Reguladores , Acetilcoenzima A/metabolismo , Antígenos CD36 , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Polissacarídeos , Rosiglitazona/farmacologia , Difosfato de Uridina
9.
Pharmacol Res ; 184: 106420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049664

RESUMO

Glycosylation is a critical post-translational modification (PTM) that affects the function of proteins and regulates cell signaling, thereby regulating various biological processes. Protein oxygen-N-acetylglucosamine (O-GlcNAc) glycosylation modifications are glycochemical modifications that occur within cells in the signal transduction and are frequently found in the cytoplasm and nucleus. Due to the rapid and reversible addition and removal, O-GlcNAc modifications are able to reversibly compete with certain phosphorylation modifications, immediately regulate the activity of proteins, and participate in kinds of cellular metabolic and signal transduction pathways, playing a pivotal role in the regulation of tumors, diabetes, and other diseases. This article provided a brief overview of O-GlcNAc glycosylation modification, introduced its role in altering the progression and immune response regulation of gastrointestinal tumors, and discussed its potential use as a marker of tumor neogenesis.


Assuntos
Acetilglucosamina , Neoplasias Gastrointestinais , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional
10.
J Biol Chem ; 295(7): 2018-2033, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31915250

RESUMO

The hexosamine biosynthesis pathway (HBP) branches from glycolysis and forms UDP-GlcNAc, the moiety for O-linked ß-GlcNAc (O-GlcNAc) post-translational modifications. An inability to directly measure HBP flux has hindered our understanding of the factors regulating protein O-GlcNAcylation. Our goals in this study were to (i) validate a LC-MS method that assesses HBP flux as UDP-GlcNAc (13C)-molar percent enrichment (MPE) and concentration and (ii) determine whether glucose availability or workload regulate cardiac HBP flux. For (i), we perfused isolated murine working hearts with [U-13C6]glucosamine (1, 10, 50, or 100 µm), which bypasses the rate-limiting HBP enzyme. We observed a concentration-dependent increase in UDP-GlcNAc levels and MPE, with the latter reaching a plateau of 56.3 ± 2.9%. For (ii), we perfused isolated working hearts with [U-13C6]glucose (5.5 or 25 mm). Glycolytic efflux doubled with 25 mm [U-13C6]glucose; however, the calculated HBP flux was similar among the glucose concentrations at ∼2.5 nmol/g of heart protein/min, representing ∼0.003-0.006% of glycolysis. Reducing cardiac workload in beating and nonbeating Langendorff perfusions had no effect on the calculated HBP flux at ∼2.3 and 2.5 nmol/g of heart protein/min, respectively. To the best of our knowledge, this is the first direct measurement of glucose flux through the HBP in any organ. We anticipate that these methods will enable foundational analyses of the regulation of HBP flux and protein O-GlcNAcylation. Our results suggest that in the healthy ex vivo perfused heart, HBP flux does not respond to acute changes in glucose availability or cardiac workload.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional/genética , Animais , Vias Biossintéticas/genética , Glicólise/genética , Glicosilação , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hexosaminas/biossíntese , Hexosaminas/genética , Humanos , Camundongos , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA