Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1433: 139-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751139

RESUMO

Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.


Assuntos
Epigênese Genética , Lisina , Epigenômica , Histona Desmetilases/genética , Histonas/genética
2.
Mol Genet Metab ; 127(1): 31-44, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097364

RESUMO

Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.


Assuntos
Histona Desmetilases/genética , Histonas/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/metabolismo , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Inativação do Cromossomo X/genética , Cromossomo Y/genética , Cromossomo Y/metabolismo
3.
Anim Genet ; 50(6): 740-743, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31475374

RESUMO

The yattle (dzo) is an interspecific hybrid of the taurine cattle (Bos taurus) and the domestic yak (Bos grunniens). F1 hybrid yattle bulls are sterile due to spermatogenic arrest and have misregulation of spermatogenesis genes in the testes. However, the expression pattern of Y chromosome-linked genes in cattle, yaks and yattle testes is still unknown. In this study, we analyzed the mRNA expression pattern of 10 genes known to be present as single copies in the X-degenerate region of the bovine male-specific region of the Y chromosome. Using male-specific primers and reverse transcription quantitative PCR, the ubiquitously transcribed tetratricopeptide repeat gene, Y-linked (UTY), oral-facial-digital syndrome 1, Y-linked (OFD1Y) and ubiquitin specific peptidase 9, Y-linked (USP9Y) genes were ubiquitously expressed and significantly more highly expressed in yattle than in cattle and yaks testes (P < 0.001). RNA binding motif protein, Y-linked (RBMY) had testes-specific expression, and eukaryotic translation initiation factor 1A, Y-linked (EIF1AY) was expressed mainly in testis, whereas yattle and cattle did not show significant differences with respect to the expression of RBMY and EIF1AY. Thus, based on the model of yattle bull sterility, the high expression of UTY, OFD1Y and USP9Y may be associated with yattle infertility.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica , Testículo/metabolismo , Animais , Bovinos/classificação , Bovinos/fisiologia , Feminino , Hibridização Genética , Infertilidade Masculina/veterinária , Masculino , Espermatogênese , Transcriptoma , Cromossomo Y
4.
Hum Mutat ; 37(9): 847-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302555

RESUMO

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona Desmetilases/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Face/patologia , Feminino , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Doenças Hematológicas/patologia , Humanos , Masculino , Herança Materna , Síndrome de Noonan/genética , Análise de Sequência de DNA , Doenças Vestibulares/patologia
5.
Genes (Basel) ; 15(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39202365

RESUMO

Genomic Safe Harbors (GSH) are loci used for the insertion of exogenous genetic elements, enabling exogenous gene expressing predictably without alterations of the host genome. These sites are becoming increasingly important as the gene editing technologies advance rapidly. Currently, only a few GSHs have been identified in the pig genome. In this study, a novel strategy was demonstrated for the efficient insertion of exogenous genetic material into the third exon of the UTY gene on the Y chromosome using CRISPR/Cas9-mediated homology arm-mediated end joining. The safety of the locus was verified according to the proper expression of the inserted EGFP gene without altering the expression of UTY. This approach enables the integration and expression of the exogenous gene at this locus, indicating that the UTY locus serves as a genomic safe harbor site for gene editing in the pig genome. Located on the Y chromosome, this site can be utilized for sex-biased pig breeding and developing biomedical models.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Cromossomo Y , Animais , Cromossomo Y/genética , Suínos/genética , Edição de Genes/métodos , Masculino
6.
Front Cell Dev Biol ; 12: 1341373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764741

RESUMO

Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.

7.
Anim Genet ; 44(4): 383-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23350719

RESUMO

The White Park Cattle (WPC) is an indigenous ancient breed from the British Isles which has a long-standing history in heroic sagas and documents. The WPC has retained many primitive traits, especially in their grazing behaviour and preferences. Altogether, the aura of this breed has led to much speculation surrounding its origin. In this study, we sequenced the mitogenomes from 27 WPC and three intronic fragments of genes from the Y chromosome of three bulls. We observed six novel mitogenomic lineages that have not been found in any other cattle breed so far. We found no evidence that the WPC is a descendant of a particular North or West European branch of aurochs. The WPC mitogenomes are grouped in the T3 cluster together with most other domestic breeds. Nevertheless, both molecular markers support the primitive position of the WPC within the taurine breeds.


Assuntos
Bovinos/genética , Variação Genética , Genoma Mitocondrial/genética , Cromossomo Y/genética , Animais , Sequência de Bases , Cruzamento , DNA Mitocondrial/genética , Marcadores Genéticos , Genótipo , Haplótipos , Íntrons/genética , Masculino , Dados de Sequência Molecular , Fenótipo , Filogenia , Análise de Sequência de DNA/veterinária , Reino Unido
8.
Reprod Fertil ; 2(2): 151-160, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128450

RESUMO

The Ubiquitous Transcribed Y (UTY a.k.a. KDM6C) AZFa candidate gene on the human Y chromosome and its paralog on the X chromosome, UTX (a.k.a. KDM6A), encode a histone lysine demethylase removing chromatin H3K27 methylation marks at genes transcriptional start sites for activation. Both proteins harbour the conserved Jumonji C (JmjC) domain, functional in chromatin metabolism, and an extended N-terminal tetratricopeptide repeat (TPR) block involved in specific protein interactions. Specific antisera for human UTY and UTX proteins were developed to distinguish the expression of both proteins in human germ cells by immunohistochemical experiments on appropriate tissue sections. In the male germ line, UTY was expressed in the fraction of A spermatogonia located at the basal membrane, probably including spermatogonia stem cells. UTX expression was more spread in all spermatogonia and in early spermatids. In female germ line, UTX expression was found in the primordial germ cells of the ovary. UTY was also expressed during fetal male germ cell development, whereas UTX expression was visible only at distinct gestation weeks. Based on these results and the conserved neighboured location of UTY and DDX3Y in Yq11 found in mammals of distinct lineages, we conclude that UTY, such as DDX3Y, is part of the Azoospermia factor a (AZFa) locus functioning in human spermatogonia to support the balance of their proliferation-differentiation rate before meiosis. Comparable UTY and DDX3Y expression was also found in gonadoblastoma and dysgerminoma cells found in germ cell nests of the dysgenetic gonads of individuals with disorders of sexual development and a Y chromosome in karyotype (DSD-XY). This confirms that AZFa overlaps with GBY, the Gonadoblastoma susceptibility Y locus, and includes the UTY gene. LAY SUMMARY: AZFa Y genes are involved in human male germ cells development and support gonadoblastoma (germ cell tumour precursor cells) in the aberrant germ cells of the gonads of females with genetic disorders of sexual development. The AZFa UTY gene on the male Y chromosome is equivalent to UTX on the female X chromosome. These genes are involved in removing gene regulators to enable activation of other genes (i.e. removal of histone methylation known as epigenetic modifications). We wanted to learn the function of UTY and UTX in developing sperm and eggs in human tissues and developed specific antibodies to detect both proteins made by these genes. Both UTY and UTX proteins were detected in adult and fetal sperm precursor cells (spermatogonia). UTX was detected in egg precursor cells (primordial germ cells). UTY was detected in gonadoblastoma and dysgerminoma tumour cells (germ cell tumours originating from genetic disorders of sexual development due to having a Y chromosome). Based on our study, we conclude that UTY is not only part of AZFa, but also of GBY the overlapping gonadoblastoma susceptibility Y region.


Assuntos
Disgerminoma , Gonadoblastoma , Histona Desmetilases/metabolismo , Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Adulto , Animais , Cromatina , Cromossomos Humanos Y , RNA Helicases DEAD-box , Feminino , Humanos , Masculino , Mamíferos , Antígenos de Histocompatibilidade Menor , Proteínas Nucleares , Sêmen , Espermatogônias
9.
Stem Cells Dev ; 29(23): 1497-1509, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33040644

RESUMO

Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.


Assuntos
Diferenciação Celular , Cromossomos Humanos Y/genética , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Proteínas Nucleares/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Forma Celular , Cromossomos Humanos X/genética , Feminino , Histona Desmetilases/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Reelina , Padrões de Referência
10.
Biol Sex Differ ; 11(1): 3, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937374

RESUMO

BACKGROUND: Sex bias in immune function has been contributed in part to a preponderance of immune system-related genes (ISRG) on the X-chromosome. We verified whether ISRG are more abundant on the X chromosome as compared to autosomal chromosomes and reflected on the impact of our findings. METHODS: Consulting freely accessible databases, we performed a comparative study consisting of three complementary strategies. First, among coding X/Y-linked genes, the abundance of ISRG was compared to the abundance of genes dedicated to other systems. Genes were assigned considering three criteria: disease, tissue expression, and function (DEF approach). In addition, we carried out two genome-wide approaches to compare the contribution of sex and autosomal chromosomes to immune genes defined by an elevated expression in lymphatic tissues (LTEEG approach) or annotation to an immune system process, GO:0002376 (GO approach). RESULTS: The X chromosome had less immune genes than the median of the autosomal chromosomes. Among X-linked genes, ISRG ranked fourth after the reproductive and nervous systems and genes dedicated to development, proliferation and apoptosis. On the Y chromosome, ISRG ranked second, and at the pseudoautosomal region (PAR) first. According to studies on the expression of X-linked genes in a variety of (mostly non-lymphatic) tissues, almost two-thirds of ISRG are expressed without sex bias, and the remaining ISRG presented female and male bias with similar frequency. Various epigenetic controllers, X-linked MSL3 and Y-linked KDM5D and UTY, were preferentially expressed in leukocytes and deserve further attention for a possible role in sex biased expression or its neutralisation. CONCLUSIONS: The X chromosome is not enriched for ISRG, though particular X-linked genes may be responsible for sex differences in certain immune responses. So far, there is insufficient information on sex-biased expression of X/Y-linked ISRG in leukocytes to draw general conclusions on the impact of X/Y-linked ISRG in immune function. More research on the regulation of the expression X-linked genes is required with attention to 1) female and male mechanisms that may either augment or diminish sex biased expression and 2) tissue-specific expression studies.


Assuntos
Cromossomos Humanos X/imunologia , Cromossomos Humanos Y/imunologia , Sistema Imunitário , Caracteres Sexuais , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino
12.
Int J Biochem Cell Biol ; 97: 78-82, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421189

RESUMO

The X-linked histone demethylase UTX has a pivotal role in cellular and developmental processes including embryogenesis, hematopoiesis and cancer. UTX removes di- and trimethyl groups on histone H3 lysine 27, thereby regulating gene expression. But there is growing evidence that UTX displays biological functions independent of its histone demethylase activity. To elucidate these novel functions, it is of great interest to define subcellular localizations of UTX. Here we show for the first time that native UTX is primarily localized in the cytoplasm whereas ectopic GFP and Flag-tagged UTX display nuclear and cytoplasmic localization. While its epigenetic function is exerted in the nucleus, its cytoplasmic localization points to a novel function.


Assuntos
Núcleo Celular/enzimologia , Citoplasma/enzimologia , Histona Desmetilases/metabolismo , Animais , Núcleo Celular/genética , Citoplasma/genética , Histona Desmetilases/genética , Humanos , Camundongos , Camundongos Knockout
13.
Cancer Cell ; 33(3): 512-526.e8, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29533787

RESUMO

KDM6A, an X chromosome-encoded histone demethylase and member of the COMPASS-like complex, is frequently mutated in a broad spectrum of malignancies and contributes to oncogenesis with poorly characterized mechanisms. We found that KDM6A loss induced squamous-like, metastatic pancreatic cancer selectively in females through deregulation of the COMPASS-like complex and aberrant activation of super-enhancers regulating ΔNp63, MYC, and RUNX3 oncogenes. This subtype of tumor developed in males had concomitant loss of UTY and KDM6A, suggesting overlapping roles, and points to largely demethylase independent tumor suppressor functions. We also demonstrate that KDM6A-deficient pancreatic cancer is selectively sensitive to BET inhibitors, which reversed squamous differentiation and restrained tumor growth in vivo, highlighting a therapeutic niche for patient tailored therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases/deficiência , Mutação/genética , Proteínas Nucleares/deficiência , Neoplasias Pancreáticas/genética , Animais , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células/genética , Histona Desmetilases/genética , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
J Reprod Infertil ; 18(3): 298-306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062794

RESUMO

BACKGROUND: The human Ubiquitously transcribed tetratricopeptide repeat gene, Y-linked (UTY) gene encodes histone demethylase involved in protein-protein interactions. UTY protein evidence at protein level predicted intracellular and secreted protein. UTY is also involved in spermatogenesis process. METHODS: The high-risk non-synonymous single nucleotide polymorphism in the coding region of the UTY gene was screened by SNP database and identified missense variants were subjected to computational analysis to understand the effect on protein function, stability and structure by SIFT, PolyPhen 2, PANTHER, PROVEAN, I-Mutant 2, iPTREE-STAB, ConSurf, ModPred, SPARKS-X, QMEAN, PROCHECK, project HOPE and STRING. RESULTS: A total of 151 nsSNPs variants were retrieved in UTY gene out of which one missense variant (E18D) was predicted to be damaging or deleterious using SIFT, PolyPhen 2, PANTHER and PROVEAN. Additionally, E18D variant showed less stability, high conservation and having role in post translation modification using i-Mutant 2 and iPTREE-STAB, ConSurf and ModPred, respectively. The predicted 3D model of UTY using SPARKS-X with z-score of 15.16 was generated and validated via QMEAN (Z-score of 0.472) and PROCHECK which plots Ramachandran plot (85.3% residues in most favored regions, 12.3% in additionally allowed regions, 2.0% in generously allowed regions and 4.0% were in disallowed regions) and it indicates a good quality model. STRING showed that UTY interacts with ten different proteins. CONCLUSION: This study revealed that SNP data available on database was deduced to find out the most damaging nsSNPs i.e. rs3212293 (E18D). Therefore, it provides useful information about functional SNPs for future prospects concerning infertility in men.

15.
Oncotarget ; 7(39): 63252-63260, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27533081

RESUMO

UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. UTY copy number loss was detected in 8 male patients (22.8%, 8/35). Of the 9 male patients with UTX mutations, 6 also had copy number loss (66.7%). To evaluate the functional roles of UTX and UTY in tumor progression, we designed UTX and UTY single knockout and UTX-UTY double knockout experiments using a CRISPR/Cas9 lentiviral system, and compared the proliferative capacities of two UBC cell lines in vitro. Single UTX or UTY knockout increased cell proliferation as compared to UTX-UTY wild-type cells. UTX-UTY double knockout cells exhibited greater proliferation than single knockout cells. These findings suggest both UTX and UTY function as dose-dependent suppressors of UBC development. While UTX escapes X chromosome inactivation in females, UTY may function as a male homologue of UTX, which could compensate for dosage imbalances.


Assuntos
Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Mutação , Estudos Prospectivos , Inativação do Cromossomo X
16.
Forensic Sci Int ; 262: 30-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26968017

RESUMO

Mass graves were discovered in Le Mans and 154 skeletons were exhumed, representing a remarkable historical series of human remains from western France. We aimed to characterise the age-class and sex of these subjects, and to determine whether their profile fits with that of the Catholic and Royal Army of Vendée, who fought against the Republican Army during the Battle of Le Mans (12th-13th December, 1793). This atypical army was composed of male soldiers, but also of civilian people who followed the troops, including the elderly, children and women. In total 154 skeletons from nine mass graves were exhumed from 2009 to 2010. Two morphological methods were used to determine the sex of the subjects: the Probabilist Sexual Diagnosis (DSP) and Secondary Sexual Diagnosis (DSS) methods. Samples were handled cautiously to avoid any pre-laboratory contamination. Molecular genetic sex-typing using a recently developed assay was used to maximise sex-diagnosis of the ancient DNA samples, and 97 successful profiles including immatures were generated. Using morphological and genetic data combined, we successfully determined the sex of 93% of the subjects; 62% were male and 31% female. About 87% of subjects could be considered adults (>18 years old), 6% adolescents (15-19 years old) and 7% infants (<15 years old). Our results of an unexpected population profile for an armed conflict (42% were women and children), in addition to traumatological and historical elements, tend to confirm that these subjects were involved in the Battle of Le Mans, either actively (Republican Army, the Catholic and Royal Army) or passively (collateral victims from the civilian population of Le Mans). They represent 5-6% of the estimated 2500-3000 victims.


Assuntos
Restos Mortais , Exumação , Adolescente , Adulto , Conflitos Armados/história , Sepultamento , Criança , Pré-Escolar , DNA Antigo , Feminino , Antropologia Forense , França , História do Século XVIII , Humanos , Lactente , Masculino , Análise para Determinação do Sexo , Determinação do Sexo pelo Esqueleto , Adulto Jovem
17.
Forensic Sci Int Genet ; 14: 96-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307201

RESUMO

Sex-testing using molecular genetic technique is routinely used in the fields of forensics, population genetics and conservation biology. However, none of the assay used so far allows a non-ambiguous and successful sex determination for human and non-human primate species. The most widely used method, AMELY/X, and its alternatives suffer from a set of drawbacks in humans and can rarely be used in New World primate species. Here, we designed a new sex-typing assay using a multiplexed PCR amplification of UTX and UTY-homologous loci and combined male-specific SRY locus. This method was successfully tested on 1048 samples, including 82 non-human primates from 45 Anthropoidea and Lemuriformes species and 966 human samples from 24 populations (Africans, Europeans, and South Americans). This sex-typing method is applicable across all primate species tested from Hominoidea to Indriidae, and also on various populations with different background origins; it represents a robust and cheap sex-typing assay to be used both by the anthropologist and primatologist communities.


Assuntos
Primatas/genética , Processos de Determinação Sexual , Cromossomo X , Cromossomo Y , Animais , Sequência de Bases , DNA/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Multiplex , Primatas/classificação , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA