Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; : e2402155, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795001

RESUMO

Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

2.
Nanotechnology ; 34(34)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207633

RESUMO

Materials capable of emitting ultraviolet (UV) radiation are sought for applications ranging from theranostics or photodynamic therapy to specific photocatalysis. The nanometer size of these materials, as well as excitation with near-infrared (NIR) light, is essential for many applications. Tetragonal tetrafluoride LiY(Gd)F4nanocrystalline host for up-converting Tm3+-Yb3+activator-sensitizer pair is a promising candidate to achieve UV-vis up-converted radiation under NIR excitation, important for numerous photo-chemical and bio-medical applications. Here, we provide insights into the structure, morphology, size and optical properties of up-converting LiYF4:25%Yb3+0.5%Tm3+colloidal nanocrystals, where 1, 5, 10, 20, 30 and 40% of Y3+ions were substituted with Gd3+ions. Low gadolinium dopant concentrations modify the size and up-conversion luminescence, while the Gd3+doping that is exceeding the structure resistance limit of the tetragonal LiYF4results in appearance of foreign phase and significant decrease of luminescence intensity. The intensity and kinetic behavior of Gd3+up-converted UV emission are also analyzed for various gadolinium ions concentrations. The obtained results form a background for further optimized materials and applications based on LiYF4nanocrystals.

3.
Nano Lett ; 22(1): 311-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939808

RESUMO

Lead-based halide perovskite nanocrystals (NCs) are recognized as emerging emissive materials with superior photoluminescence (PL) properties. However, the toxicity of lead and the swift chemical decomposition under atmospheric moisture severely hinder their commercialization process. Herein, we report the first colloidal synthesis of lead-free Cs4CuIn2Cl12 layered double perovskite NCs via a facile moisture-assisted hot-injection method stemming from relatively nontoxic precursors. Although moisture is typically detrimental to NC synthesis, we demonstrate that the presence of water molecules in Cs4CuIn2Cl12 synthesis enhances the PL quantum yield (mainly in the near-UV range), induces a morphological transformation from 3D nanocubes to 2D nanoplatelets, and converts the dark transitions to radiative transitions for the observed self-trapped exciton relaxation. This work paves the way for further studies on the moisture-assisted synthesis of novel lead-free halide perovskite NCs for a wide range of applications.

4.
Angew Chem Int Ed Engl ; 60(41): 22241-22247, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387938

RESUMO

Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y =0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.

5.
Nano Lett ; 17(6): 3347-3355, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28441498

RESUMO

Thin-wall tubes composed of nitride semiconductors (III-N compounds) based on GaN/InAlN multiple quantum wells (MQWs) are fabricated by metal-organic vapor-phase epitaxy in a simple and full III-N approach. The synthesis of such MQW-tubes is based on the growth of N-polar c-axis vertical GaN wires surrounded by a core-shell MQW heterostructure followed by in situ selective etching using controlled H2/NH3 annealing at 1010 °C to remove the inner GaN wire part. After this process, well-defined MQW-based tubes having nonpolar m-plane orientation exhibit UV light near 330 nm up to room temperature, consistent with the emission of GaN/InAlN MQWs. Partially etched tubes reveal a quantum-dotlike signature originating from nanosized GaN residuals present inside the tubes. The possibility to fabricate in a simple way thin-wall III-N tubes composed of an embedded MQW-based active region offering controllable optical emission properties constitutes an important step forward to develop new nitride devices such as emitters, detectors or sensors based on tubelike nanostructures.

6.
Chemistry ; 21(1): 324-30, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25377789

RESUMO

A novel procedure for the preparation of few-layers boron nitride (BN), either as films or as suspended BN platelets, is presented, based on the pyrolysis of chitosan, which serves both as a matrix to embed ammonium borate and as a template for BN synthesis. The resulting BN samples are characterized by XRD, Raman and X-ray photoelectron spectroscopy, and by TEM and AFM imaging. The samples exhibit deep UV emission, which is characteristic of high quality BN. This template synthesis and the easy exfoliation of BN platelets facilitate the use of BN as an extremely high-efficiency Fenton catalyst for the generation of highly aggressive hydroxyl radicals in water.

7.
ACS Appl Mater Interfaces ; 16(3): 4261-4270, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38217498

RESUMO

Layered lead halide perovskites have attracted much attention as promising materials for a new generation of optoelectronic devices. To make progress in applications, a full understanding of the basic properties is essential. Here, we study 2D-layered (BA)2PbX4 by using different halide anions (X = I, Br, and Cl) along with quantum confinement. The obtained cell parameter evolution, supported by experimental measurements and theoretical calculations, indicates strong lattice distortions of the metal halide octahedra, breaking the local inversion symmetry in (BA)2PbCl4, which strongly correlates with a pronounced Rashba spin-splitting effect. Optical measurements reveal strong photoluminescence quenching and a drastic reduction in the PL quantum yield in this larger band gap compound. We suggest that these optical results are closely related to the appearance of the Rashba effect due to the existence of a local electric dipole. The results obtained in ab initio calculations showed that the (BA)2PbCl4 possesses electrical polarization of 0.13 µC/cm2 and spin-splitting energy of about 40 meV. Our work establishes that local octahedra distortions induce Rashba spin splitting, which explains why obtaining UV-emitting materials with high PLQY is a big challenge.

8.
Small ; 9(19): 3213-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23696330

RESUMO

A family of upconverting nanoparticles (UCNPs) with a tunable UV enhancement is developed via a facile approach. The design leads to a maximum 9-fold enhancement in comparison with known optimal ß-phase core/shell UCNPs in water. A highly effective and rapid in situ real-time live-cell photoactivation is recorded for the first time with such nanoparticles.


Assuntos
Raios Infravermelhos , Luminescência , Nanopartículas/química , Fotoquímica/métodos , Raios Ultravioleta
9.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614574

RESUMO

The nearly dormant field of persistent luminescence has gained fresh impetus after the discovery of strontium aluminate persistent luminescence phosphor in 1996. Several efforts have been put in to prepare efficient, long decay, persistent luminescent materials which can be used for different applications. The most explored among all are the materials which emit in the visible wavelength region, 400-650 nm, of the electromagnetic spectrum. However, since 2014, the wavelength range is extended further above 650 nm for biological applications due to easily distinguishable signal between luminescent probe and the auto-fluorescence. Recently, UV-emitting persistent materials have gained interest among researchers' due to their possible application in information storage, phototherapy and photocatalysis. In the present review, we summarize these recent developments on the UV-emitting persistent luminescent materials to motivate young minds working in the field of luminescent materials.

10.
Adv Mater ; 33(17): e2008690, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33763933

RESUMO

Engineering halide perovskites through alloying allows synthesis of materials having tuned electronic and optical properties; however, synthesizing many of these alloys is hindered by the formation of demixed phases arising due to thermodynamically unstable crystal structures. Methods have been developed to make such alloys, such as solid-phase reactions, chemical vapor deposition, and mechanical grinding; but these are incompatible with low-temperature solution-processing and monolithic integration, precluding a number of important applications of these materials. Here, solvent-phase kinetic trapping (SPKT), an approach that enables the synthesis of novel thermodynamically unfavored perovskite alloys, is developed. SPKT is used to synthesize Cs1- x Rbx PbCl3 and report the first instance of ultraviolet emission in polycrystalline perovskite thin films. SPKT leads to materials exhibiting superior thermal and photostability compared to non-kinetically trapped materials of the same precursors. Transient absorption spectroscopy of the kinetically trapped material reveals improved optical properties: greater absorption, and longer ground-state bleach lifetimes. SPKT may be applied to other perovskites to realize improved material properties while benefiting from facile solution-processing.

11.
Nanomaterials (Basel) ; 10(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640733

RESUMO

The need for improved UV emitting luminescent materials underscored by applications in optical communications, sterilization and medical technologies is often addressed by wide bandgap semiconducting oxides. Among these, the Mg-doped ZnO system is of particular interest as it offers the opportunity to tune the UV emission by engineering its bandgap via doping control. However, both the doped system and its pristine congener, ZnO, suffer from being highly prone to parasitic defect level emissions, compromising their efficiency as light emitters in the ultraviolet region. Here, employing the process of femtosecond pulsed laser ablation in a liquid (fs-PLAL), we demonstrate the systematic control of enhanced UV-only emission in Mg-doped ZnO nanoparticles using both photoluminescence and cathodoluminescence spectroscopies. The ratio of luminescence intensities corresponding to near band edge emission to defect level emission was found to be six-times higher in Mg-doped ZnO nanoparticles as compared to pristine ZnO. Insights from UV-visible absorption and Raman analysis also reaffirm this defect suppression. This work provides a simple and effective single-step methodology to achieve UV-emission and mitigation of defect emissions in the Mg-doped ZnO system. This is a significant step forward in its deployment for UV emitting optoelectronic devices.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118464, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32470805

RESUMO

Zinc compounds in the form of inorganic/organic hybrids containing both zinc halides and heterocyclic ligands show various interesting optical and physicochemical properties. Due to these properties, there is a potential for development of various innovative technologies and applications within the life sciences. In this study, experimental and theoretical results on the absorption and emission (steady state and time-resolved) properties of the hybrid ZnCl2(QO)2 complex formed between ZnCl2 and quinoline N-oxide, have been reported. Single crystal X-ray analysis revealed the tetragonal cell (Z = 4) with P41212 space group and a slight crystal distortion. Interestingly, experiments in aprotic solvents show that both absorption and emission spectra peak in the ultraviolet (UV) region suggesting a weak CT character of the emissive S1 state, confirmed by a middle Stokes shift values. The results of the nanosecond time-resolved emission spectroscopy suggest two different structures of the complex described by the two different lifetimes and variable amplitudes dependent on the polarity of the medium. In the solid state, a relatively strong, bright blue luminescence appears at 413 nm (τ = 2.26 ns). Theoretical calculations (DFT and TD DFT) confirm experimental studies and reveal the solvent-dependent chameleon properties of ZnCl2(QO)2 by two different structures in two solvents of a contrast polarity. In apolar cyclohexane (CHX, µ = 5.612 D), the planes of both lateral quinoline N-oxide (QO) rings show to be nearly parallel each to another, resembling the crystal structure, while in a strongly polar acetonitrile (AN, µ = 9.328 D) they are nearly perpendicular. Such parallel arrangement of quinoline rings of ZnCl2(QO)2 complex in weakly polar methylcyclohexane can hinder the process of Photoinduced Electron Transfer, resulting in a stronger emission and significant quantum yield in comparison to more polar media.

13.
J Colloid Interface Sci ; 536: 586-597, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30390584

RESUMO

The current photodynamic therapy (PDT) is majorly hindered by the shallow penetration depth and oxygen dependency, limiting its application to deep-seated solid hypoxic tumors. Thus, it is meaningful to develop efficient X-ray mediated PDT system capable of generating reactive oxygen species (ROS) under both the normoxic and hypoxic conditions. Herein, we report the synthesis and characterization of nanocomposite, YAG:Pr@ZnO@PpIX with an amalgamation of UV-emitting Y2.99Pr0.01Al5O12 (YAG:Pr) nanoscintillator, and zinc oxide (ZnO) and protoporphyrin IX (PpIX) as photosensitizers. YAG:Pr surface was coated with a ZnO layer (∼10 nm) by atomic layer deposition, and then PpIX was covalently conjugated via a linker to give YAG:Pr@ZnO@PpIX. The photo- and cathodoluminescence analyses gave the evidences of efficient energy transfer from YAG:Pr to ZnO at ∼320 nm, and YAG:Pr@ZnO to PpIX at Soret region (350-450 nm). The nanohybrid was able to produce both, Type I and Type II ROS upon direct and indirect photoactivation with UV365nm and UV290nm, respectively. In vitro cytotoxicity of non-activated YAG:Pr@ZnO@PpIX in mouse melanoma cells revealed low toxicity, which significantly enhanced upon photoactivation with UV365nm indicating the photokilling property of the nanohybrid. Overall, our preliminary studies successfully demonstrate the potential of YAG:Pr@ZnO@PpIX to overcome the limited penetration and oxygen-dependency of traditional PDT.


Assuntos
Nanocompostos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Alumínio/química , Alumínio/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Estrutura Molecular , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Praseodímio/química , Praseodímio/farmacologia , Protoporfirinas/química , Protoporfirinas/farmacologia , Propriedades de Superfície , Células Tumorais Cultivadas , Ítrio/química , Ítrio/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA