Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(2): 293-308.e14, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113892

RESUMO

Ubiquitylation is catalyzed by coordinated actions of E3 and E2 enzymes. Molecular principles governing many important E3-E2 partnerships remain unknown, including those for RING-family GID/CTLH E3 ubiquitin ligases and their dedicated E2, Ubc8/UBE2H (yeast/human nomenclature). GID/CTLH-Ubc8/UBE2H-mediated ubiquitylation regulates biological processes ranging from yeast metabolic signaling to human development. Here, cryoelectron microscopy (cryo-EM), biochemistry, and cell biology reveal this exquisitely specific E3-E2 pairing through an unconventional catalytic assembly and auxiliary interactions 70-100 Å away, mediated by E2 multisite phosphorylation. Rather than dynamic polyelectrostatic interactions reported for other ubiquitylation complexes, multiple Ubc8/UBE2H phosphorylation sites within acidic CK2-targeted sequences specifically anchor the E2 C termini to E3 basic patches. Positions of phospho-dependent interactions relative to the catalytic domains correlate across evolution. Overall, our data show that phosphorylation-dependent multivalency establishes a specific E3-E2 partnership, is antagonistic with dephosphorylation, rigidifies the catalytic centers within a flexing GID E3-substrate assembly, and facilitates substrate collision with ubiquitylation active sites.


Assuntos
Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilação , Microscopia Crioeletrônica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676777

RESUMO

Meiotically competent oocytes in mammals undergo cyclic development during folliculogenesis. Oocytes within ovarian follicles are transcriptionally active, producing and storing transcripts required for oocyte growth, somatic cell communication and early embryogenesis. Transcription ceases as oocytes transition from growth to maturation and does not resume until zygotic genome activation. Although SUMOylation, a post-translational modification, plays multifaceted roles in transcriptional regulation, its involvement during oocyte development remains poorly understood. In this study, we generated an oocyte-specific knockout of Ube2i, encoding the SUMO E2 enzyme UBE2I, using Zp3-cre+ to determine how loss of oocyte SUMOylation during folliculogenesis affects oocyte development. Ube2i Zp3-cre+ female knockout mice were sterile, with oocyte defects in meiotic competence, spindle architecture and chromosome alignment, and a premature arrest in metaphase I. Additionally, fully grown Ube2i Zp3-cre+ oocytes exhibited sustained transcriptional activity but downregulated maternal effect genes and prematurely activated genes and retrotransposons typically associated with zygotic genome activation. These findings demonstrate that UBE2I is required for the acquisition of key hallmarks of oocyte development during folliculogenesis, and highlight UBE2I as a previously unreported orchestrator of transcriptional regulation in mouse oocytes.


Assuntos
Montagem e Desmontagem da Cromatina , Sumoilação , Feminino , Animais , Camundongos , Montagem e Desmontagem da Cromatina/genética , Oócitos , Folículo Ovariano , Zigoto , Mamíferos
3.
Trends Immunol ; 43(2): 148-162, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033428

RESUMO

Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.


Assuntos
COVID-19 , Lisina , Humanos , Lisina/metabolismo , SARS-CoV-2 , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 119(49): e2210404119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442095

RESUMO

Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFß) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.


Assuntos
Diapausa de Inseto , Diapausa , Animais , Fator de Crescimento Transformador beta , Pupa , Transdução de Sinais , Receptores de Fatores de Crescimento Transformadores beta , Ubiquitina , Complexo de Endopeptidases do Proteassoma
5.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664795

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Atrofia Muscular Espinal , Transdução de Sinais , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/imunologia , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
J Neurosci ; 43(34): 6035-6045, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37507229

RESUMO

Unipolar brush cells (UBCs) in the cerebellum and dorsal cochlear nucleus (DCN) perform temporal transformations by converting brief mossy fiber bursts into long-lasting responses. In the cerebellar UBC population, mixing inhibition with graded mGluR1-dependent excitation leads to a continuum of temporal responses. In the DCN, it has been thought that mGluR1 contributes little to mossy fiber responses and that there are distinct excitatory and inhibitory UBC subtypes. Here, we investigate UBC response properties using noninvasive cell-attached recordings in the DCN of mice of either sex. We find a continuum of responses to mossy fiber bursts ranging from 100 ms excitation to initial inhibition followed by several seconds of excitation to inhibition lasting for hundreds of milliseconds. Pharmacological interrogation reveals excitatory responses are primarily mediated by mGluR1 Thus, UBCs in both the DCN and cerebellum rely on mGluR1 and have a continuum of response durations. The continuum of responses in the DCN may allow more flexible and efficient temporal processing than can be achieved with distinct excitatory and inhibitory populations.SIGNIFICANCE STATEMENT UBCs are specialized excitatory interneurons in cerebellar-like structures that greatly prolong the temporal responses of mossy fiber inputs. They are thought to help cancel out self-generated signals. In the DCN, the prevailing view was that there are two distinct ON and OFF subtypes of UBCs. Here, we show that instead the UBC population has a continuum of response properties. Many cells show suppression and excitation consecutively, and the response durations vary considerably. mGluR1s are crucial in generating a continuum of responses. To understand how UBCs contribute to temporal processing, it is essential to consider the continuous variations of UBC responses, which have advantages over just having opposing ON/OFF subtypes of UBCs.


Assuntos
Núcleo Coclear , Camundongos , Animais , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia
7.
J Biol Chem ; 299(4): 103054, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822329

RESUMO

The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.


Assuntos
Enzimas Desubiquitinantes , Ferroptose , Histona-Lisina N-Metiltransferase , Enzimas de Conjugação de Ubiquitina , Enzimas Desubiquitinantes/metabolismo , Lisina/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Humanos , Histona-Lisina N-Metiltransferase/metabolismo
8.
J Biol Chem ; 299(7): 104870, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247759

RESUMO

Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
9.
J Cell Physiol ; 239(5): e31213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308641

RESUMO

Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.


Assuntos
Autofagia , Dano ao DNA , Lamina Tipo B , Neurônios , Traumatismos da Medula Espinal , Sumoilação , Enzimas de Conjugação de Ubiquitina , Animais , Camundongos , Núcleo Celular/metabolismo , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Neurônios/metabolismo , Neurônios/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
10.
BMC Plant Biol ; 24(1): 341, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671351

RESUMO

BACKGROUND: Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS: In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION: Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.


Assuntos
Família Multigênica , Filogenia , Triticum , Enzimas de Conjugação de Ubiquitina , Triticum/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Perfilação da Expressão Gênica
11.
J Biomed Sci ; 31(1): 16, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280996

RESUMO

SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.


Assuntos
Neoplasias , Enzimas de Conjugação de Ubiquitina , Humanos , Animais , Camundongos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Cisteína/genética , Ubiquitinas/metabolismo , Ubiquitina/metabolismo , Neoplasias/genética
12.
J Biol Chem ; 298(9): 102292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868557

RESUMO

Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.


Assuntos
Katanina , Microtúbulos , Crescimento Neuronal , Sumoilação , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimologia , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
13.
Neurobiol Dis ; 188: 106342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918759

RESUMO

SUMOylation is a post-translational modification (PTM) that exerts a regulatory role in different cellular processes, including protein localization, aggregation, and biological activities. It consists of the dynamic formation of covalent isopeptide bonds between a family member of the Small Ubiquitin Like Modifiers (SUMOs) and the target proteins. Interestingly, it is a cellular mechanism implicated in several neurodegenerative pathologies and potentially it could become a new therapeutic target; however, there are very few pharmacological tools to modulate the SUMOylation process. In this study, we have designed and tested the activity of a novel small cell-permeable peptide, COV-1, in a neuroblastoma cell line that specifically prevents protein SUMOylation. COV-1 inhibits UBC9-protein target interaction and efficiently decreases global SUMO-1ylation. Moreover, it can perturb RanGAP-1 perinuclear localization by inducing the downregulation of UBC9. In parallel, we found that COV-1 causes an increase in the ubiquitin degradation system up to its engulfment while enhancing the autophagic flux. Surprisingly, COV-1 modifies protein aggregation, and specifically it mislocalizes TDP-43 within cells, inducing its aggregation and co-localization with SUMO-1. These data suggest that COV-1 could be taken into future consideration as an interesting pharmacological tool to study the cellular cascade effects of SUMOylation prevention.


Assuntos
Proteínas de Ligação a DNA , Sumoilação , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Ubiquitina/metabolismo , Peptídeos/metabolismo
14.
Acta Pharmacol Sin ; 44(3): 661-669, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36138144

RESUMO

Neddylation is a type of posttranslational protein modification that has been observed to be overactivated in various cancers. UBC12 is one of two key E2 enzymes in the neddylation pathway. Reports indicate that UBC12 deficiency may suppress lung cancer cells, such that UBC12 could play an important role in tumor progression. However, systematic studies regarding the expression profile of UBC12 in cancers and its relationship to cancer prognosis are lacking. In this study, we comprehensively analyzed UBC12 expression in diverse cancer types and found that UBC12 is markedly overexpressed in most cancers (17/21), a symptom that negatively correlates with the survival rates of cancer patients, including gastric cancer. These results demonstrate the suitability of UBC12 as a potential target for cancer treatment. Currently, no effective inhibitor targeting UBC12 has been discovered. We screened a natural product library and found, for the first time, that arctigenin has been shown to significantly inhibit UBC12 enzyme activity and cullin neddylation. The inhibition of UBC12 enzyme activity was newly found to contribute to the effects of arctigenin on suppressing the malignant phenotypes of cancer cells. Furthermore, we performed proteomics analysis and found that arctigenin intervened with cullin downstream signaling pathways and substrates, such as the tumor suppressor PDCD4. In summary, these results demonstrate the importance of UBC12 as a potential therapeutic target for cancer treatment, and, for the first time, the suitability of arctigenin as a potential compound targeting UBC12 enzyme activity. Thus, these findings provide a new strategy for inhibiting neddylation-overactivated cancers.


Assuntos
Proteínas Culina , Neoplasias Pulmonares , Enzimas de Conjugação de Ubiquitina , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Culina/efeitos dos fármacos , Furanos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Proteínas de Ligação a RNA , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/efeitos dos fármacos
15.
Mol Ther ; 30(7): 2568-2583, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351656

RESUMO

Proneural (PN) to mesenchymal (MES) transition (PMT) is a crucial phenotypic shift in glioblastoma stem cells (GSCs). However, the mechanisms driving this process remain poorly understood. Here, we report that Fos-like antigen 1 (FOSL1), a component of AP1 transcription factor complexes, is a key player in regulating PMT. FOSL1 is predominantly expressed in the MES subtype, but not PN subtype, of GSCs. Knocking down FOSL1 expression in MES GSCs leads to the loss of MES features and tumor-initiating ability, whereas ectopic expression of FOSL1 in PN GSCs is able to induce PMT and maintain MES features. Moreover, FOSL1 facilitates ionizing radiation (IR)-induced PMT and radioresistance of PN GSCs. Inhibition of FOSL1 enhances the anti-tumor effects of IR by preventing IR-induced PMT. Mechanistically, we find that FOSL1 promotes UBC9-dependent CYLD SUMOylation, thereby inducing K63-linked polyubiquitination of major nuclear factor κB (NF-κB) intermediaries and subsequent NF-κB activation, which results in PMT induction in GSCs. Our study underscores the importance of FOSL1 in the regulation of PMT and suggests that therapeutic targeting of FOSL1 holds promise to attenuate molecular subtype switching in patients with glioblastomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
Urol Int ; 107(1): 29-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36273445

RESUMO

OBJECTIVES: Bladder cancer is a common type of malignancy. UBC®Rapid is a novel immunoassay detecting urine cytokeratin 8/18 protein. Studies have shown good accuracy of UBC®Rapid in detecting bladder cancer. UBC®Rapid has however to date not been evaluated in Asian patients. We evaluated UBC®Rapid in detecting Asian bladder cancer, together with urine cytology. METHODS: In total, 112 patients were recruited from National University Hospital Singapore and 103 patients were included in this study, comprising 49 patients with bladder urothelial carcinoma (UC), 21 patients with bladder benign lesions, and 33 patients with normal bladder. All the bladder cancer and benign lesions were confirmed by histology. Voided urine was collected for UBC®Rapid test. The results were compared with urine cytology. RESULTS: The bladder UC group had remarkably higher UBC®Rapid value than the control groups. The sensitivity, specificity, positive, and negative predictive value of UBC®Rapid in detecting bladder UC were 53%, 85.5%, 76.5%, and 66.8%, respectively. Those of urine cytology were 40.8%, 96.3%, 90.9%, and 64.2%, respectively. Adding UBC®Rapid to urine cytology increased sensitivity to 57.1% but decreased specificity to 81.8%. UBC®Rapid was sensitive in detecting high-grade bladder UC (61.1%) and carcinoma in situ (CIS) (72.7%), as compared to urine cytology for bladder UC (55.6%) and CIS (54.5%), respectively. CONCLUSION: UBC®Rapid is sensitive in detecting high-grade bladder UC and CIS in Asian population. It may be useful as an adjunct test to achieve better detection of bladder cancer.


Assuntos
Carcinoma in Situ , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Biomarcadores Tumorais
17.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768743

RESUMO

Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.


Assuntos
Solanum tuberosum , Enzimas de Conjugação de Ubiquitina , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Sequência de Aminoácidos , Saccharomyces cerevisiae/metabolismo
18.
Biochem Cell Biol ; 100(4): 309-324, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544948

RESUMO

Liver fibrosis is a very common health problem and currently lacks effective treatments. Cullin RING E3 ligases (CRLs) regulate the turnover of ∼20% of mammalian cell proteins. Neddylation, the process by which NEDD8 is covalently attached to cullin proteins through sequential enzymatic reactions, is critical for the activation of CRLs and was recently found to be elevated in liver fibrosis. NEDD8-activating enzyme E1-specific inhibition led to the reduced liver damage characterized by decreased apoptosis, inflammation, and fibrosis. However, the relevance of a co-E3 ligase, DCN1, in liver fibrosis remains unclear. Here, a novel and potent DCN1-UBC12 interaction inhibitor HZX-960 was discovered with an IC50 value of 9.37 nmol/L, which could inhibit the neddylation of cullin3. Importantly, we identified that HZX-960 treatment could attenuate transforming growth factor ß-induced liver fibrotic responses by reducing the deposition of collagen I and α-smooth muscle actin, and upregulating cellular NF-E2-related factor 2, hemeoxygenase 1, and NADPH quinone oxidoreductase-1 levels in two hepatic stellate cell lines. Additionally, DCN1 was shown to be unregulated in CCl4-induced mice liver tissue, and liver fibrotic signaling in mice was reduced by HZX-960. Therefore, our data demonstrated that HZX-960 possessed anti-liver fibrosis ability and that DCN1 may be a potential therapeutic target for liver fibrosis treatment.


Assuntos
Inibidores Enzimáticos , Cirrose Hepática , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Animais , Proteínas Culina/metabolismo , Inibidores Enzimáticos/farmacologia , Cirrose Hepática/tratamento farmacológico , Camundongos , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitinação
19.
J Exp Bot ; 73(16): 5372-5387, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35640002

RESUMO

Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.


Assuntos
Lisina , Enzimas de Conjugação de Ubiquitina , Lisina/metabolismo , Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
20.
BJU Int ; 130(6): 754-763, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928524

RESUMO

OBJECTIVES: To evaluate the clinical utility of the urinary bladder cancer antigen test UBC® Rapid for the diagnosis of bladder cancer (BC) and to develop and validate nomograms to identify patients at high risk of primary BC. PATIENTS AND METHODS: Data from 1787 patients from 13 participating centres, who were tested between 2012 and 2020, including 763 patients with BC, were analysed. Urine samples were analysed with the UBC® Rapid test. The nomograms were developed using data from 320 patients and externally validated using data from 274 patients. The diagnostic accuracy of the UBC® Rapid test was evaluated using receiver-operating characteristic curve analysis. Brier scores and calibration curves were chosen for the validation. Biopsy-proven BC was predicted using multivariate logistic regression. RESULTS: The sensitivity, specificity, and area under the curve for the UBC® Rapid test were 46.4%, 75.5% and 0.61 (95% confidence interval [CI] 0.58-0.64) for low-grade (LG) BC, and 70.5%, 75.5% and 0.73 (95% CI 0.70-0.76) for high-grade (HG) BC, respectively. Age, UBC® Rapid test results, smoking status and haematuria were identified as independent predictors of primary BC. After external validation, nomograms based on these predictors resulted in areas under the curve of 0.79 (95% CI 0.72-0.87) and 0.95 (95% CI: 0.92-0.98) for predicting LG-BC and HG-BC, respectively, showing excellent calibration associated with a higher net benefit than the UBC® Rapid test alone for low and medium risk levels in decision curve analysis. The R Shiny app allows the results to be explored interactively and can be accessed at www.blucab-index.net. CONCLUSION: The UBC® Rapid test alone has limited clinical utility for predicting the presence of BC. However, its combined use with BC risk factors including age, smoking status and haematuria provides a fast, highly accurate and non-invasive tool for screening patients for primary LG-BC and especially primary HG-BC.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Nomogramas , Hematúria , Curva ROC , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA