Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315790

RESUMO

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Assuntos
Morte Celular , Estresse do Retículo Endoplasmático , Ubiquitinas , eIF-2 Quinase , Animais , Camundongos , Apoptose , eIF-2 Quinase/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas
2.
J Virol ; 96(13): e0061122, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695579

RESUMO

Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeostasis is very limited. We used a 74-DUB library-based yeast two-hybrid assay and determined that a novel DUB, valosin-containing protein-interacting protein 1 (VCPIP1), interacted with HBx. VCPIP1 and its C-terminal amino acids 863 to 1221 upregulated the HBx protein expression, with or without HBV infection. Mechanistically, VCPIP1 stabilized HBx protein through a ubiquitin-independent pathway, which was validated by the HBx ubiquitination site mutant plasmid. Coimmunoprecipitation assays demonstrated the potency of VCPIP1 in recruiting 26S proteasome regulatory subunit 6A (PSMC3) and forming a ternary complex with HBx through mutual interaction. In vitro, purified His-tagged PSMC3 protein rescued HBx degradation induced by the 20S proteasome, and in vivo VCPIP1 synergized the mechanism. Functionally, HBx specifically binding to VCPIP1 significantly enhanced the transcriptional transactivation of HBx by activating NF-κB, AP-1, and SP-1 and inhibited hepatoma cell clonogenicity in Huh7 and HepG2 cells. Moreover, we further demonstrated that overexpression of VCPIP1 significantly affected the HBV covalently closed circular DNA (cccDNA) transcription in HBV-infected HepG2-NTCP cells. Altogether, our results indicate a novel mechanism by which VCPIP1 recruits PSMC3 to bind with HBx, stabilizing it in a ubiquitin-independent manner, which might be critical for developing DUB inhibitors in the future. IMPORTANCE HBx is a multifunctional viral oncoprotein that plays an essential role in the viral life cycle and hepatocarcinogenesis. HBx degradation occurs through the ubiquitin-proteasome system (UPS). However, whether novel compartments of the DUBs in the UPS also act in regulating HBx stability is not fully understood. Here, for the first time, we defined VCPIP1 as a novel DUB for preventing HBx degradation by the 20S proteasome in a ubiquitin-independent manner. PSMC3, encoding the 26S proteasome regulatory subunit, directly stabilized HBx through physical binding instead of a common approach in protein degradation, serving as the key downstream effector of VCPIP1 on HBx. Therefore, the ternary binding pattern between VCPIP1, HBx, and PSMC3 is initiated for the first time, which eventually promotes HBx stability and its functions. Our findings provide novel insights into host-virus cross talk by targeting DUBs in the UPS.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Carcinoma Hepatocelular , Endopeptidases , Hepatite B , Neoplasias Hepáticas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/fisiopatologia , Endopeptidases/metabolismo , Células Hep G2 , Hepatite B/enzimologia , Hepatite B/fisiopatologia , Vírus da Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Development ; 146(8)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30910828

RESUMO

In most species, early germline development occurs in the absence of transcription with germline determinants subject to complex translational and post-translational regulations. Here, we report for the first time that early germline development is influenced by dynamic regulation of the proteasome system, previously thought to be ubiquitously expressed and to serve 'housekeeping' roles in controlling protein homeostasis. We show that proteasomes are present in a gradient with the highest levels in the animal hemisphere and extending into the vegetal hemisphere of Xenopus oocytes. This distribution changes dramatically during the oocyte-to-embryo transition, with proteasomes becoming enriched in and restricted to the animal hemisphere and therefore separated from vegetally localized germline determinants. We identify Dead-end1 (Dnd1), a master regulator of vertebrate germline development, as a novel substrate of the ubiquitin-independent proteasomes. In the oocyte, ubiquitin-independent proteasomal degradation acts together with translational repression to prevent premature accumulation of Dnd1 protein. In the embryo, artificially increasing ubiquitin-independent proteasomal degradation in the vegetal pole interferes with germline development. Our work thus reveals novel inhibitory functions and spatial regulation of the ubiquitin-independent proteasome during vertebrate germline development.


Assuntos
Células Germinativas/metabolismo , Ubiquitina/metabolismo , Animais , Citoplasma/metabolismo , Células Germinativas/citologia , Oócitos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA