Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 152(2): 109-117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30927067

RESUMO

To assess the potential role of IL-6 in sciatic nerve injury-induced activation of a pro-regenerative state in remote dorsal root ganglia (DRG) neurons, we compared protein levels of SCG-10 and activated STAT3, as well as axon regeneration in IL-6 knockout (IL-6ko) mice and their wild-type (WT) counterparts. Unilateral sciatic nerve compression and transection upregulated SCG-10 protein levels and activated STAT3 in DRG neurons not only in lumbar but also in cervical segments of WT mice. A pro-regenerative state induced by prior sciatic nerve lesion in cervical DRG neurons of WT mice was also shown by testing for axon regeneration in crushed ulnar nerve. DRG neurons from IL-6ko mice also displayed bilaterally increased levels of SCG-10 and STAT3 in both lumbar and cervical segments after sciatic nerve lesions. However, levels of SCG-10 protein in lumbar and cervical DRG of IL-6ko mice were significantly lower than those of their WT counterparts. Sciatic nerve injury induced a lower level of SCG-10 in cervical DRG of IL-6ko than WT mice, and this correlates with significantly shorter regeneration of axons distal to the crushed ulnar nerve. These results suggest that IL-6 contributes, at the very least, to initiation of the neuronal regeneration program in remote DRG neurons after unilateral sciatic nerve injury.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Interleucina-6/metabolismo , Regeneração Nervosa , Neurônios/citologia , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio , Gânglios Espinais/patologia , Gânglios Espinais/cirurgia , Imuno-Histoquímica , Interleucina-6/análise , Interleucina-6/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/química , Neurônios/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/cirurgia , Fator de Transcrição STAT3/análise , Estatmina
2.
Front Cell Neurosci ; 13: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778286

RESUMO

The primary sensory neurons of dorsal root ganglia (DRG) are a very useful model to study the neuronal regenerative program that is a prerequisite for successful axon regeneration after peripheral nerve injury. Seven days after a unilateral sciatic nerve injury by compression or transection, we detected a bilateral increase in growth-associated protein-43 (GAP-43) and superior cervical ganglion-10 (SCG-10) mRNA and protein levels not only in DRG neurons of lumbar spinal cord segments (L4-L5) associated with injured nerve, but also in remote cervical segments (C6-C8). The increase in regeneration-associated proteins in the cervical DRG neurons was associated with the greater length of regenerated axons 1 day after ulnar nerve crush following prior sciatic nerve injury as compared to controls with only ulnar nerve crush. The increased axonal regeneration capacity of cervical DRG neurons after a prior conditioning sciatic nerve lesion was confirmed by neurite outgrowth assay of in vitro cultivated DRG neurons. Intrathecal injection of IL-6 or a JAK2 inhibitor (AG490) revealed a role for the IL-6 signaling pathway in activating the pro-regenerative state in remote DRG neurons. Our results suggest that the pro-regenerative state induced in the DRG neurons non-associated with the injured nerve reflects a systemic reaction of these neurons to unilateral sciatic nerve injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA