Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2307049120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725646

RESUMO

The dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals. We directly visualize the generation, propagation, branching, and energy dissipation of longitudinal and transverse acoustic waves in diamond, demonstrating how mechanical energy thermalizes from picosecond to microsecond timescales. Bulk characterization techniques capable of resolving this level of structural detail have previously been available on millisecond time scales-orders of magnitude too slow to capture these fundamental phenomena in solid-state physics and geoscience. As such, the reported results provide broad insights into the interaction of acoustic waves with the structure of materials, and the availability of ultrafast time-resolved dark-field X-ray microscopy opens a vista of new opportunities for 3D imaging of materials dynamics on their intrinsic submicrosecond time scales.

2.
Magn Reson Med ; 87(6): 2811-2825, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35099082

RESUMO

PURPOSE: To present a deep learning-based reconstruction method for spatiotemporally encoded single-shot MRI to simultaneously obtain water and fat images. METHODS: Spatiotemporally encoded MRI is an ultrafast branch that can encode chemical shift information due to its special quadratic phase modulation. A deep learning approach using a 2D U-Net was proposed to reconstruct spatiotemporally encoded signal and obtain water and fat images simultaneously. The training data for U-Net were generated by MRiLab software (version 1.3) with various synthetic models. Numerical simulations and experiments on ex vivo pork and in vivo rats at a 7.0 T Varian MRI system (Agilent Technologies, Santa Clara, CA) were performed, and the deep learning results were compared with those obtained by state-of-the-art algorithms. The structural similarity index and signal-to-ghost ratio were used to evaluate the residual artifact of different reconstruction methods. RESULTS: With a well-trained neural network, the proposed deep learning approach can accomplish signal reconstruction within 0.46 s on a personal computer, which is comparable with the conjugate gradient method (0.41 s) and much faster than the state-of-the-art super-resolved water-fat image reconstruction method (30.31 s). The results of numerical simulations, ex vivo pork experiments, and in vivo rat experiments demonstrate that the deep learning approach can achieve better fidelity and higher spatial resolution compared to the other 2 methods. The deep learning approach also has a great advantage in artifact suppression, as indicated by the signal-to-ghost ratio results. CONCLUSION: Spatiotemporally encoded MRI with deep learning can provide ultrafast water-fat separation with better performance compared to the state-of-the-art methods.


Assuntos
Aprendizado Profundo , Algoritmos , Animais , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ratos , Água
3.
Chimia (Aarau) ; 76(6): 529-537, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069722

RESUMO

Ultrafast single-particle imaging with intense x-ray pulses from free-electron laser sources provides a new approach for visualizing structure and dynamics on the nanoscale. After a short introduction to the novel free-electron laser sources and methods, we highlight selected applications and discuss how ultrafast imaging flourishes from method development to early applications in physics and biology to opportunities for chemical sciences.

4.
Magn Reson Med ; 86(6): 3166-3174, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34270138

RESUMO

PURPOSE: To demonstrate an MRI pulse sequence-Sub-millisecond Periodic Event Encoded Dynamic Imaging with a reduced field of view (or rFOV-SPEEDI)-for decreasing the scan times while achieving sub-millisecond temporal resolution. METHODS: rFOV-SPEEDI was based on a variation of SPEEDI, known as get-SPEEDI, which used each echo in an echo-train to sample a distinct k-space raster by synchronizing with a cyclic event. This can produce a set of time-resolved images of the cyclic event with a temporal resolution determined by the echo spacing (typically < 1 ms). rFOV-SPEEDI incorporated a 2D radiofrequency (RF) pulse into get-SPEEDI to limit the field of view (FOV), leading to reduction in phase-encoding steps and subsequently decreased scan times without compromising the spatial resolution. Two experiments were performed at 3T to illustrate rFOV-SPEEDI's capability of capturing fast-changing electric currents in a phantom and the rapid opening and closing of aortic valve in human subjects over reduced FOVs. The results were compared with those from full FOV get-SPEEDI. RESULTS: In the first experiment, the rapidly varying currents (50-200 Hz) were successfully captured with a temporal resolution of 0.8 ms, and agreed well with the applied currents. In the second experiment, the rapid opening and closing processes of aortic valve were clearly visualized with a temporal resolution of 0.6 ms over a reduced FOV (12 × 12 cm2 ). In both experiments, the acquisition times of rFOV-SPEEDI were decreased by 33%-50% relative to full FOV get-SPEEDI acquisitions and the spatial resolution was maintained. CONCLUSION: Reducing the FOV is a viable approach to shortening the scan times in SPEEDI, which is expected to help stimulate SPEEDI applications for studying ultrafast, cyclic physiological and biophysical processes over a focal region.


Assuntos
Valva Aórtica , Imageamento por Ressonância Magnética , Valva Aórtica/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Ondas de Rádio
5.
Magn Reson Med ; 85(5): 2434-2444, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252784

RESUMO

PURPOSE: To demonstrate an MRI technique-Submillisecond Periodic Event Encoded Dynamic Imaging (SPEEDI)-for capturing cyclic dynamic events with submillisecond temporal resolution. METHODS: The SPEEDI technique is based on an FID or an echo signal in which each time point in the signal is used to sample a distinct k-space raster, followed by repeated FIDs or echoes to produce the remaining k-space data in each k-space raster. All acquisitions are synchronized with a cyclic event, resulting in a set of time-resolved images of the cyclic event with a temporal resolution determined by the dwell time. In SPEEDI, spatial encoding is accomplished by phase encoding. The SPEEDI technique was demonstrated in two experiments at 3 T to (1) visualize fast-changing electric currents that mimicked the waveform of an action potential, and (2) characterize rapidly decaying eddy currents in an MRI system, with a temporal resolution of 0.2 ms and 0.4 ms, respectively. In both experiments, compressed sensing was incorporated to reduce the scan times. Phase difference maps related to the dynamics of electric currents or eddy currents were then obtained. RESULTS: In the first experiment, time-resolved phase maps resulting from the action potential-mimicking current waveform were successfully obtained and agreed well with theoretical calculations (normalized RMS error = 0.07). In the second experiment, spatially resolved eddy current phase maps revealed time constants (27.1 ± 0.2 ms, 41.1 ± 3.5 ms, and 34.8 ± 0.7 ms) that matched well with those obtained from an established method using point sources (26.4 ms, 41.2 ms and 34.8 ms). For both experiments, phase maps from fully sampled and compressed-sensing-accelerated k-space data exhibited a high structural similarity (> 0.8) despite a two-fold to three-fold acceleration. CONCLUSIONS: We have illustrated that SPEEDI can provide submillisecond temporal resolution. This capability will likely lead to future exploration of ultrafast, cyclic biomedical processes using MRI.


Assuntos
Aceleração , Imageamento por Ressonância Magnética
6.
Magn Reson Med ; 85(4): 1986-2000, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107102

RESUMO

PURPOSE: To develop an ultrafast 3D gradient echo-based MRI method with constant TE and high tolerance to B0 inhomogeneity, dubbed ERASE (equal-TE rapid acquisition with sequential excitation), and to introduce its use in BOLD functional MRI (fMRI). THEORY AND METHODS: Essential features of ERASE, including spin behavior, were characterized, and a comparison study was conducted with conventional EPI. To demonstrate high tolerance to B0 inhomogeneity, in vivo imaging of the mouse brain with a fiber-optic implant was performed at 9.4 T, and human brain imaging (including the orbitofrontal cortex) was performed at 3 T and 7 T. To evaluate the performance of ERASE in BOLD-fMRI, the characteristics of SNR and temporal SNR were analyzed for in vivo rat brains at 9.4 T in comparison with multislice gradient-echo EPI. Percent signal changes and t-scores are also presented. RESULTS: For both mouse brain and human brain imaging, ERASE exhibited a high tolerance to magnetic susceptibility artifacts, showing much lower distortion and signal dropout, especially in the regions involving large magnetic susceptibility effects. For BOLD-fMRI, ERASE provided higher temporal SNR and t-scores than EPI, but exhibited similar percent signal changes in in vivo rat brains at 9.4 T. CONCLUSION: When compared with conventional EPI, ERASE is much less sensitive, not only to EPI-related artifacts such as Nyquist ghosting, but also to B0 inhomogeneity including magnetic susceptibility effects. It is promising for use in BOLD-fMRI, providing higher temporal SNR and t-scores with constant TE when compared with EPI, although further optimization is needed for human fMRI.


Assuntos
Artefatos , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade
7.
Annu Rev Phys Chem ; 70: 219-244, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30883273

RESUMO

We highlight the recent progress in ultrafast dynamic microscopy that combines ultrafast optical spectroscopy with microscopy approaches, focusing on the application transient absorption microscopy (TAM) to directly image energy and charge transport in solar energy harvesting and conversion systems. We discuss the principles, instrumentation, and resolutions of TAM. The simultaneous spatial, temporal, and excited-state-specific resolutions of TAM unraveled exciton and charge transport mechanisms that were previously obscured in conventional ultrafast spectroscopy measurements for systems such as organic solar cells, hybrid perovskite thin films, and molecular aggregates. We also discuss future directions to improve resolutions and to develop other ultrafast imaging contrasts beyond transient absorption.

8.
J Magn Reson Imaging ; 51(1): 164-174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215107

RESUMO

BACKGROUND: Ultrafast dynamic contrast-enhanced (UF-DCE) breast MRI is considered a promising method of accelerated breast MRI. However, the value of new kinetic parameters derived from UF-DCE need clinical evaluation. PURPOSE: To evaluate the diagnostic performance of the maximum slope (MS), time to enhancement (TTE), and time interval between arterial and venous visualization (AVI) derived from UF-DCE MRI using compressed sensing (CS). STUDY TYPE: Retrospective. POPULATION: Seventy-five patients with histologically proven breast lesions. The total number of analyzed lesions was 90 (61 malignant and 29 benign). FIELD STRENGTH/SEQUENCE: 3T MRI with UF-DCE MRI based on the 3D gradient-echo volumetric interpolated breath-hold examination (VIBE) sequence using incoherent k-space sampling combined with a CS reconstruction followed by conventional DCE MRI. ASSESSMENT: The diagnostic performance of the MS, TTE, AVI, and conventional kinetic analysis was analyzed and compared with histology. STATISTICAL TESTS: Wilcoxon rank sum test, receiver operating characteristic analysis. RESULTS: The MS was larger and the TTE and AVI were smaller for malignant lesions compared with benign lesions: MS: 29.3%/s and 18.4%/s (P < 0.001), TTE: 7.0 and 12.0 seconds (P < 0.001), AVI: 2.7 and 4.4 frames (P = 0.006) for malignant and benign lesions. The discriminating power of the MS (area under the curve [AUC], 0.76) was slightly better than that of conventional kinetic analysis (AUC, 0.69) and comparable to that of the TTE and AVI (AUC, 0.78 and 0.76 for TTE and AVI, respectively). Invasive lobular carcinoma had smaller MS (21.8%/s) among malignant lesions (29.3%/s). DATA CONCLUSION: The MS, TTE, and AVI can be used to evaluate breast lesions with clinical performance equivalent to that of conventional kinetic analysis. These parameters vary among histologies. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:164-174.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
9.
Angew Chem Int Ed Engl ; 59(43): 19001-19005, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32681616

RESUMO

We developed a direct mapping approach to overlay the image of a polycrystalline perovskite film obtained from the transient absorption microscope (TAM) with that from the scanning electron microscope (SEM). By mapping these imaging data pixel by pixel, we are able to observe the relaxation dynamics of the photo-generated charge carriers on varied regions of the film. The carrier relaxation dynamics contain a dominated single-exponential decay component owing to the recombination of charge carriers. The lifetime distribution of charge recombination shows a bimodal feature, for which the rapid and slow distributions are assigned as free and trapped carriers, respectively. The charge recombination was slower in the grain boundary (GB) region than in the grain interior (GI) region. The small grains have longer lifetimes than the large grains for the crystal size smaller than 500 nm. Therefore, GB with retarded charge recombination might play a positive role in a perovskite solar cell.

10.
Magn Reson Med ; 82(1): 237-250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883886

RESUMO

PURPOSE: To propose a novel 3D ultrafast gradient echo-based MRI method, dubbed RASE, using quadratic-phase encoding. THEORY AND METHODS: Several characteristics of RASE, including spin behaviors, spatial resolution, SNR, and reduction of susceptibility-induced signal loss, were analytically described. A way of compensating for TE variation was suggested in the quadratic phase-encoding direction. Lemon, in vivo rat and mouse images were demonstrated at 9.4T, including a feasibility study for DCE-MRI as one of promising applications. RESULTS: RASE was successfully demonstrated by lemon and in vivo rat brain imaging, showing a good robustness to field inhomogeneity. Contribution of the quadratic phase to signal enhancement in a range of magnetic susceptibilities was also evaluated by simulation. Taking a geometric mean of 2 phantom data acquired with opposite gradient polarities effectively compensated for the effect of TE variation. Preliminary DCE-MRI results were also presented, showing that RASE could more accurately estimate Gd concentration than FLASH. CONCLUSION: RASE offers a shorter effective TE, having less sensitivity to field inhomogeneity and T2* effects, much less Nyquist ghosting or chemical-shift artifacts than gradient echo EPI (GE-EPI). We highly anticipate that RASE can be an alternative to GE-EPI in many applications, particularly those requiring high spatial and temporal resolutions in a broad volume coverage.


Assuntos
Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Animais , Encéfalo/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Ratos
11.
Biomed Eng Online ; 18(1): 22, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866955

RESUMO

BACKGROUND: The resources of ultrafast technology can be used to add another analysis to ultrasound imaging: assessment of tissue viscoelasticity. Ultrafast image formation can be utilized to find transitory shear waves propagating in soft tissue, which permits quantification of the mechanical properties of the tissue via elastography. This technique permits simple and noninvasive diagnosis and monitoring of disease. METHODS: This article presents a method to estimate the viscoelastic properties and rigidity of structures using the ultrasound technique known as shear wave elasticity imaging (SWEI). The Verasonics Vantage 128 research platform and L11-4v transducer were used to acquire radio frequency signals from a model 049A elastography phantom (CIRS, USA), with subsequent processing and analysis in MATLAB. RESULTS: The images and indexes obtained reflect the qualitative measurements of the different regions of inclusions in the phantom and the respective alterations in the viscoelastic properties of distinct areas. Comparison of the results obtained with this proposed technique and other commonly used techniques demonstrates the characteristics of median filtering in smoothing variations in velocity to form elastographic images. The results from the technique proposed in this study are within the margins of error indicated by the phantom manufacturer for each type of inclusion; for the phantom base and for type I, II, III, and IV inclusions, respectively, in kPa and percentage errors, these are 25 (24.0%), 8 (37.5%), 14 (28.6%), 45 (17.8%), and 80 (15.0%). The values obtained using the method proposed in this study and mean percentage errors were 29.18 (- 16.7%), 10.26 (- 28.2%), 15.64 (- 11.7%), 45.81 (- 1.8%), and 85.21 (- 6.5%), respectively. CONCLUSIONS: The new technique to obtain images uses a distinct filtering function which considers the mean velocity in the region around each pixel, in turn allowing adjustments according to the characteristics of the phantom inclusions within the ultrasound and optimizing the resulting elastographic images.


Assuntos
Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imagens de Fantasmas , Fatores de Tempo
12.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(5): 313-317, 2019 Sep 30.
Artigo em Zh | MEDLINE | ID: mdl-31625324

RESUMO

The ultrasound endoscopic probes with very small size transducers are normally imaging by focused ultrasound beamforming technology. So the imaging frame rate is not very high, which cannot meet the needs of some clinical applications based on high imaging rate. In recent years, plane-wave ultrafast imaging technology can obtain high image frame rate and guarantee the image quality. In this paper, a plane wave ultra-fast imaging technique based on a home-made small line array ultrasound transducer is presented. Feasibility of the method is verified by simulation estimations and phantom experiments. The results show that for the small size transducer design of plane wave ultrafast imaging, it is necessary to fully consider the combination of the array element width and the number of array elements. So that a good plane wave imaging quality can be obtained. It lays a foundation for the ultra-fast imaging of plane wave in the interventional ultrasound imaging and ultrasound endoscopy.


Assuntos
Transdutores , Ultrassonografia , Imagens de Fantasmas , Ultrassonografia/instrumentação
13.
Acta Radiol ; 59(3): 346-354, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28569117

RESUMO

Background Ultrasensitive Doppler is a novel non-invasive ultrasound (US) Doppler technique that improves sensitivity and resolution for the detection of slow flow. Purpose To investigate the feasibility of ultrasensitive Doppler (USD) for testicular disease diagnosis, using both qualitative and quantitative results. Material and Methods This prospective study was conducted in 160 successive men referred for scrotal US including B-mode and conventional Color-Doppler. A new USD sequence and algorithm dedicated to academic research were implemented into the US system. The quality criterion for a successful examination was the detection of well delineated intratesticular vessels. Qualitative USD results were described in terms of tumor vascular architecture and flow intensity for different pathologies for 41 patients. The testicular vascularization (TV), defined as a vessel's surface ratio, was quantified using customized MATLAB® software and compared in azoospermic and normal patients. Results USD was acquired successfully in 153/160 patients (95.6%). The tumor vascular architecture differed depending on the nature of the tumors. Leydig cell tumors exhibited mostly circumferential vascularization, while germ cell tumors exhibited straight vessels through the tumors, or anarchic vascular maps. USD improved the diagnostic performance of testicular Doppler US in a case of incomplete spermatic cord torsion and acute epididymitis. The reproducibility of TV measurements established an interclass correlation of 0.801. Non-Klinefelter syndrome non-obstructive azoospermia patients exhibited a lower TV compared to normal patients, to Klinefelter syndrome, and to obstructive azoospermia patients ( P < 0.002, P < 0.005, and P < 0.05, respectively). Conclusion Testicular USD can become a promising technique for improving US diagnosis of tumors, acute scrotum, and for determining infertility status.


Assuntos
Escroto/diagnóstico por imagem , Doenças Testiculares/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 112(24): 7444-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034277

RESUMO

There is a fundamental interest in studying photoinduced dynamics in nanoparticles and nanostructures as it provides insight into their mechanical and thermal properties out of equilibrium and during phase transitions. Nanoparticles can display significantly different properties from the bulk, which is due to the interplay between their size, morphology, crystallinity, defect concentration, and surface properties. Particularly interesting scenarios arise when nanoparticles undergo phase transitions, such as melting induced by an optical laser. Current theoretical evidence suggests that nanoparticles can undergo reversible nonhomogenous melting with the formation of a core-shell structure consisting of a liquid outer layer. To date, studies from ensembles of nanoparticles have tentatively suggested that such mechanisms are present. Here we demonstrate imaging transient melting and softening of the acoustic phonon modes of an individual gold nanocrystal, using an X-ray free electron laser. The results demonstrate that the transient melting is reversible and nonhomogenous, consistent with a core-shell model of melting. The results have implications for understanding transient processes in nanoparticles and determining their elastic properties as they undergo phase transitions.

15.
Proc Natl Acad Sci U S A ; 111(29): 10479-84, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006261

RESUMO

Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

16.
Ultrason Imaging ; 39(4): 207-223, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28627331

RESUMO

During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.


Assuntos
Simulação por Computador , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Ultrassonografia/estatística & dados numéricos
17.
Magn Reson Med ; 73(4): 1483-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24845125

RESUMO

PURPOSE: This study quantifies in vivo ischemic stroke brain injuries in rats using ultrahigh-field single-scan MRI methods to assess variations in apparent diffusion coefficients (ADCs). METHODS: Magnitude and diffusion-weighted spatiotemporally encoded imaging sequences were implemented on a 21.1 T imaging system, and compared with spin-echo and echo-planar imaging diffusion-weighted imaging strategies. ADC maps were calculated and used to evaluate the sequences according to the statistical comparisons of the ipsilateral and contralateral ADC measurements at 24, 48, and 72 h poststroke. RESULTS: Susceptibility artifacts resulting from normative anatomy and pathological stroke conditions were particularly intense at 21.1 T. These artifacts strongly distorted single-shot diffusion-weighted echo-planar imaging experiments, but were reduced in four-segment interleaved echo-planar imaging acquisitions. By contrast, nonsegmented diffusion-weighted spatiotemporally encoded images were largely immune to field-dependent artifacts. Effects of stroke were apparent in both magnitude images and ADC maps of all sequences. When stroke recovery was followed by ADC variations, spatiotemporally encoded, echo-planar imaging, and spin-echo acquisitions revealed statistically significant increase in ADCs. CONCLUSIONS: Consideration of experiment duration, image quality, and mapped ADC values provided by spatiotemporally encoded demonstrates that this single-shot acquisition is a method of choice for high-throughput, ultrahigh-field in vivo stroke quantification.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/patologia , Algoritmos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
18.
Nano Lett ; 14(11): 6287-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259929

RESUMO

Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.

20.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399088

RESUMO

This study delves into the intricate dynamics of laser-induced damage in fused silica using a time-resolved pump-probe (TRPP) shadowgraph. Three typical ultra-fast processes, laser-induced plasma evolution, shockwave propagation and material fracture splashing, were quantitatively investigated. The results indicate that the diameter of plasma is proportional to the pulse laser energy and increases linearly during the pulse laser duration with an expansion rate of approximately 6 km/s. The maximum shockwave velocity on the air side is 9 km/s, occurring at the end of the pulse duration, and then rapidly decreases due to air resistance, reaching approximately 1 km/s around a 300 ns delay. After hundreds of nanoseconds, there is a distinct particle splashing phenomenon, with the splashing particle speed distribution ranging from 0.15 km/s to 2.0 km/s. The particle sizes of the splashing particles range from 4 µm to 15 µm. Additionally, the smaller the delay, the faster the speed of the splashing particles. Overall, TRPP technology provides crucial insights into the temporal evolution of laser-induced damage in fused silica, contributing to a comprehensive understanding essential for optimizing the performance and safety of laser systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA