Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326416

RESUMO

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.

2.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606978

RESUMO

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Am J Hum Genet ; 111(8): 1656-1672, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39043182

RESUMO

Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.


Assuntos
Síndrome de Alagille , Proteína Jagged-1 , Mutação de Sentido Incorreto , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Éxons/genética
4.
Proc Natl Acad Sci U S A ; 121(14): e2316616121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551839

RESUMO

Motivated by the implementation of a SARS-Cov-2 sewer surveillance system in Chile during the COVID-19 pandemic, we propose a set of mathematical and algorithmic tools that aim to identify the location of an outbreak under uncertainty in the network structure. Given an upper bound on the number of samples we can take on any given day, our framework allows us to detect an unknown infected node by adaptively sampling different network nodes on different days. Crucially, despite the uncertainty of the network, the method allows univocal detection of the infected node, albeit at an extra cost in time. This framework relies on a specific and well-chosen strategy that defines new nodes to test sequentially, with a heuristic that balances the granularity of the information obtained from the samples. We extensively tested our model in real and synthetic networks, showing that the uncertainty of the underlying graph only incurs a limited increase in the number of iterations, indicating that the methodology is applicable in practice.


Assuntos
COVID-19 , Pandemias , Humanos , Incerteza , COVID-19/epidemiologia , Surtos de Doenças , SARS-CoV-2
5.
Am J Hum Genet ; 110(6): 940-949, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236177

RESUMO

While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Proteína BRCA2/genética , Mutação de Sentido Incorreto , Análise de Sequência de DNA , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Coortes
6.
Proc Natl Acad Sci U S A ; 120(30): e2219925120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459509

RESUMO

Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.


Assuntos
Infertilidade Masculina , Mutação de Sentido Incorreto , Humanos , Masculino , Camundongos , Animais , Reprodução , Alelos , Infertilidade Masculina/genética , Modelos Animais de Doenças , Septinas/genética
7.
J Biol Chem ; 300(10): 107739, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222682

RESUMO

The retina-specific ABCA transporter, ABCA4, is essential for vision, and its genetic variants are associated with a wide range of inherited retinal degenerative diseases, leading to blindness. Of the 1630 identified missense variants in ABCA4, ∼50% are of unknown pathogenicity (variants of unknown significance, VUS). This genetic uncertainty presents three main challenges: (i) inability to predict disease-causing variants in relatives of inherited retinal degenerative disease patients with multiple ABCA4 mutations; (ii) limitations in developing variant-specific treatments; and (iii) difficulty in using these variants for future disease prediction, affecting patients' life-planning and clinical trial participation. To unravel the clinical significance of ABCA4 genetic variants at the level of protein function, we have developed a virus-like particle-based system that expresses the ABCA4 protein and its variants. We validated the efficacy of this system in the enzymatic characterization (ATPase activity) of VLPs harboring ABCA4 and two variants of established pathogenicity: p.N965S and p.C1488R. Our results were consistent with previous reports and clinical phenotypes. We also applied this platform to characterize the VUS p.Y1779F and observed a functional impairment, suggesting a potential pathogenic impact. This approach offers an efficient, high-throughput method for ABCA4 VUS characterization. Our research points to the significant promise of the VLP-based system in the functional analysis of membrane proteins, offering important perspectives on the disease-causing potential of genetic variants and shedding light on genetic conditions involving such proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação de Sentido Incorreto , Variação Genética , Células HEK293 , Vírion/genética , Vírion/metabolismo , Animais
8.
Am J Hum Genet ; 109(4): 618-630, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196514

RESUMO

Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Quebras de DNA de Cadeia Dupla , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , DNA , Reparo do DNA , Feminino , Humanos , Mutação de Sentido Incorreto
9.
Am J Hum Genet ; 109(7): 1199-1207, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688147

RESUMO

Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.


Assuntos
Síndrome do QT Longo , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/genética
10.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37843401

RESUMO

Phosphatase and tensin homolog (PTEN), a tumor suppressor with dual phosphatase properties, is a key factor in PI3K/AKT signaling pathway. Pathogenic germline variation in PTEN can abrogate its ability to dephosphorylate, causing high cancer risk. Lack of functional evidence lets numerous PTEN variants be classified as variants of uncertain significance (VUS). Utilizing Molecular Dynamics (MD) simulations, we performed a thorough evaluation for 147 PTEN missense VUS, sorting them into 66 deleterious and 81 tolerated variants. Utilizing replica exchange molecular dynamic (REMD) simulations, we further assessed the variants situated in the catalytic core of PTEN's phosphatase domain and uncovered conformational alterations influencing the structural stability of the phosphatase domain. There was a high degree of agreement between our results and the variants classified by Variant Abundance by Massively Parallel Sequencing, saturation mutagenesis, multiplexed functional data and experimental assays. Our extensive analysis of PTEN missense VUS should benefit their clinical applications in PTEN-related cancer. SIGNIFICANCE STATEMENT: Classification of PTEN variants affecting its lipid phosphatase activity is important for understanding the roles of PTEN variation in the pathogenesis of hereditary and sporadic malignancies. Of the 3000 variants identified in PTEN, 1296 (43%) were assigned as VUS. Here, we applied MD and REMD simulations to investigate the effects of PTEN missense VUS on the structural integrity of the PTEN phosphatase domain consisting the WPD, P and TI active sites. We classified a total of 147 missense VUS into 66 deleterious and 81 tolerated variants by referring to the control group comprising 54 pathogenic and 12 benign variants. The classification was largely in concordance with these classified by experimental approaches.


Assuntos
Neoplasias , PTEN Fosfo-Hidrolase , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases , Mutação de Sentido Incorreto , Mutação em Linhagem Germinativa
11.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769878

RESUMO

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Assuntos
Síndromes de Imunodeficiência , Fosfolipase C gama , Humanos , Doenças Autoimunes , Cálcio/metabolismo , Síndromes de Imunodeficiência/genética , Mutação , Fosfolipase C gama/genética
12.
Genes Chromosomes Cancer ; 63(9): e23275, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324485

RESUMO

Concurrent testing of numerous genes for hereditary breast cancer (BC) is available but can result in management difficulties. We evaluated use of an expanded BC gene panel in women of diverse South African ancestries and assessed use of African genomic data to reclassify variants of uncertain significance (VUS). A total of 331 women of White, Black African, or Mixed Ancestry with BC had a 9-gene panel test, with an additional 75 genes tested in those without a pathogenic/likely pathogenic (P/LP) variant. The proportion of VUS reclassified using ClinGen gene-specific allele frequency (AF) thresholds or an AF > 0.001 in nonguidelines genes in African genomic data was determined. The 9-gene panel identified 58 P/LP variants, but only two of the P/LP variants detected using the 75-gene panel were in confirmed BC genes, resulting in a total of 60 (18.1%) in all participants. P/LP variant prevalence was similar across ancestry groups, but VUS prevalence was higher in Black African and Mixed Ancestry than in White participants. In total, 611 VUS were detected, representing 324 distinct variants. 10.8% (9/83) of VUS met ClinGen AF thresholds in genomic data while 10.8% (26/240) in nonguideline genes had an AF > 0.001. Overall, 27.0% of VUS occurrences could potentially be reclassified using African genomic data. Thus, expanding the gene panel yielded few clinically actionable variants but many VUS, particularly in participants of Black African and Mixed Ancestry. However, use of African genomic data has the potential to reclassify a significant proportion of VUS.


Assuntos
População Negra , Neoplasias da Mama , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/etnologia , Feminino , África do Sul/epidemiologia , Pessoa de Meia-Idade , Adulto , População Negra/genética , Prevalência , Variação Genética , Idoso , Predisposição Genética para Doença , Frequência do Gene , Testes Genéticos/métodos , População Branca/genética
13.
Breast Cancer Res ; 26(1): 115, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978071

RESUMO

Various histopathological, clinical and imaging parameters have been evaluated to identify a subset of women diagnosed with lesions with uncertain malignant potential (B3 or BIRADS 3/4A lesions) who could safely be observed rather than being treated with surgical excision, with little impact on clinical practice. The primary reason for surgery is to rule out an upgrade to either ductal carcinoma in situ or invasive breast cancer, which occurs in up to 30% of patients. We hypothesised that the stromal immune microenvironment could indicate the presence of carcinoma associated with a ductal B3 lesion and that this could be detected in biopsies by counting lymphocytes as a predictive biomarker for upgrade. A higher number of lymphocytes in the surrounding specialised stroma was observed in upgraded ductal and papillary B3 lesions than non-upgraded (p < 0.01, negative binomial model, n = 307). We developed a model using lymphocytes combined with age and the type of lesion, which was predictive of upgrade with an area under the curve of 0.82 [95% confidence interval 0.77-0.87]. The model can identify some patients at risk of upgrade with high sensitivity, but with limited specificity. Assessing the tumour microenvironment including stromal lymphocytes may contribute to reducing unnecessary surgeries in the clinic, but additional predictive features are needed.


Assuntos
Neoplasias da Mama , Linfócitos , Células Estromais , Microambiente Tumoral , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Idoso , Linfócitos/imunologia , Linfócitos/patologia , Células Estromais/patologia , Adulto , Gradação de Tumores , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/imunologia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/imunologia , Biomarcadores Tumorais
14.
Am J Med Genet C Semin Med Genet ; : e32109, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215591

RESUMO

This piece narrates the journey of Maria (name of the mother has been altered to protect the family's privacy), a new mother confronting her newborn's unexpected diagnosis of very long chain acyl-CoA dehydrogenase (VLCAD) deficiency, despite undergoing proactive genetic carrier screening within a consanguineous marriage. It highlights the emotional and systemic challenges arising from the lack of diversity in genetic databases, which, in this case, failed to detect pathogenic variants in Maria and her husband. Maria's story sheds light on situations where a masked variant of uncertain significance (VUS) necessitates consultation with a trained genetics specialist and underscores the urgent need for a more equitable healthcare system.

15.
Trends Genet ; 37(12): 1109-1123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509299

RESUMO

Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Estudo de Associação Genômica Ampla , Humanos , Virulência
16.
Am J Hum Genet ; 108(10): 1907-1923, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34597585

RESUMO

Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Predisposição Genética para Doença , Variação Genética , Neoplasias Ovarianas/patologia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Feminino , Testes Genéticos , Genótipo , Humanos , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/genética
17.
Am J Hum Genet ; 108(3): 458-468, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609447

RESUMO

Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Reparo de DNA por Recombinação/genética , Neoplasias da Mama/patologia , Feminino , Variação Genética/genética , Humanos , Mutação de Sentido Incorreto/genética , Relação Estrutura-Atividade
18.
Am J Hum Genet ; 108(1): 163-175, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33357406

RESUMO

The lack of functional evidence for the majority of missense variants limits their clinical interpretability and poses a key barrier to the broad utility of carrier screening. In Lynch syndrome (LS), one of the most highly prevalent cancer syndromes, nearly 90% of clinically observed missense variants are deemed "variants of uncertain significance" (VUS). To systematically resolve their functional status, we performed a massively parallel screen in human cells to identify loss-of-function missense variants in the key DNA mismatch repair factor MSH2. The resulting functional effect map is substantially complete, covering 94% of the 17,746 possible variants, and is highly concordant (96%) with existing functional data and expert clinicians' interpretations. The large majority (89%) of missense variants were functionally neutral, perhaps unexpectedly in light of its evolutionary conservation. These data provide ready-to-use functional evidence to resolve the ∼1,300 extant missense VUSs in MSH2 and may facilitate the prospective classification of newly discovered variants in the clinic.


Assuntos
Predisposição Genética para Doença/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Células HEK293 , Humanos
19.
Am J Hum Genet ; 108(4): 696-708, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743207

RESUMO

The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.


Assuntos
Processamento Alternativo/genética , Técnicas e Procedimentos Diagnósticos , Doença/genética , RNA/análise , Análise de Sequência de RNA , Incerteza , Estudos de Coortes , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA/genética , Sítios de Splice de RNA/genética
20.
Am J Hum Genet ; 108(8): 1526-1539, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34270938

RESUMO

Pituitary hormone deficiency occurs in ∼1:4,000 live births. Approximately 3% of the cases are due to mutations in the alpha isoform of POU1F1, a pituitary-specific transcriptional activator. We found four separate heterozygous missense variants in unrelated individuals with hypopituitarism that were predicted to affect a minor isoform, POU1F1 beta, which can act as a transcriptional repressor. These variants retain repressor activity, but they shift splicing to favor the expression of the beta isoform, resulting in dominant-negative loss of function. Using a high-throughput splicing reporter assay, we tested 1,070 single-nucleotide variants in POU1F1. We identified 96 splice-disruptive variants, including 14 synonymous variants. In separate cohorts, we found two additional synonymous variants nominated by this screen that co-segregate with hypopituitarism. This study underlines the importance of evaluating the impact of variants on splicing and provides a catalog for interpretation of variants of unknown significance in POU1F1.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Hipopituitarismo/patologia , Mutação , Hormônios Hipofisários/deficiência , Splicing de RNA/genética , Fator de Transcrição Pit-1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Hipopituitarismo/etiologia , Hipopituitarismo/metabolismo , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA