Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Evol Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044333

RESUMO

Prey often rely on multiple defences against predators, such as flight speed, attack deflection from vital body parts, or unpleasant taste, but our understanding on how often and why they are co-exhibited remains limited. Eudaminae skipper butterflies use fast flight and mechanical defences (hindwing tails), but whether they use other defences like unpalatability (consumption deterrence), and how these defences interact, has not been assessed. We tested the palatability of 12 abundant Eudaminae species in Peru, using training and feeding experiments with domestic chicks. Further, we approximated the difficulty of capture explained by flight speed and quantified by wing loading. We performed phylogenetic regressions to find any association between multiple defences, body size, and habitat preference. We found a broad range of palatability in Eudaminae, within and among species. Contrary to current understanding, palatability was negatively correlated with wing loading, suggesting that faster butterflies tend to have lower palatability. The relative length of hind wing tails did not explain the level of butterfly palatability, showing that attack deflection and consumption deterrence are not mutually exclusive. Habitat preference (open or forested environments) did not explain the level of palatability either, although butterflies with high wing loading tended to occupy semi-closed or closed habitats. Finally, the level of unpalatability in Eudaminae is size dependent. Larger butterflies are less palatable, perhaps because of higher detectability/preference by predators. Altogether, our findings shed light on the contexts favouring the prevalence of single vs. multiple defensive strategies in prey.

2.
J Chem Ecol ; 49(3-4): 195-204, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36854928

RESUMO

Many chemically-defended/aposematic species rely on diet for sequestering the toxins with which they defend themselves. This dietary acquisition can lead to variable chemical defenses across space, as the community composition of chemical sources is likely to vary across the range of (an aposematic) species. We characterized the alkaloid content of two populations of the Dyeing Poison Frog (Dendrobates tinctorius) in northeastern French Guiana. Additionally, we conducted unpalatability experiments with naive predators, Blue Tits (Cyanistes caeruleus), using whole-skin secretion cocktails to assess how a model predator would respond to the defense of individuals from each population. While there was some overlap between the two D. tinctorius populations in terms of alkaloid content, our analysis revealed that these two populations are markedly distinct in terms of overall alkaloid profiles. Predator responses to skin secretions differed between the populations. We identified 15 candidate alkaloids (including three previously undescribed) in seven classes that are correlated with predator response in one frog population. We describe alkaloid profile differences between populations for D. tinctorius and provide a novel method for assessing unpalatability of skin secretions and identifying which toxins may contribute to the predator response. In one population, our results suggest 15 alkaloids that are implicated in predator aversive response. This method is the first step in identifying the causal link between alkaloids and behavioral responses of predators, and thus makes sense of how varying alkaloid combinations are capable of eliciting consistent behavioral responses, and eventually driving evolutionary change in aposematic characters (or characteristics).


Assuntos
Alcaloides , Venenos , Aves Canoras , Toxinas Biológicas , Humanos , Animais , Venenos/toxicidade , Anuros/fisiologia , Comportamento Predatório/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(38): 19037-19045, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481623

RESUMO

Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.


Assuntos
Comunicação Animal , Anuros/fisiologia , Aprendizagem da Esquiva , Comportamento Animal , Galinhas/fisiologia , Fluxo Gênico , Comportamento Predatório/fisiologia , Animais , Animais Peçonhentos/genética , Animais Peçonhentos/fisiologia , Anuros/genética , Evolução Biológica , Variação Genética , Genética Populacional , Modelos Biológicos , Fenótipo
4.
Front Zool ; 18(1): 39, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446035

RESUMO

BACKGROUND: Poison frogs are known for the outstanding diversity of alkaloid-based chemical defences with promising therapeutic applications. However, current knowledge about chemical defences in Dendrobatoidea superfamily has two sources of bias. First, cryptic, brown-colored species have been neglected in comparison to those conspicuously colored, and second, there has been little interest in characterizing metabolites other than alkaloids mediating defensive functions. In an effort to contribute to fill the gap of knowledge about cryptic species and broadening the spectrum of compounds analyzed we have applied head-space solid phase microextraction coupled to gas chromatography and mass spectrometry (HS-SPME/GC-MS) for extracting amphibian alkaloids and volatile organic compounds (VOCs) from Silverstoneia punctiventris. RESULTS: Using the skin from 8 specimens in 4 biological replicates we have found 33 different compounds. Twenty of them were classified as VOCs into 15 chemical classes including alkanes, alcohols, carbonyl compounds, methylpyridines, benzothiazoles, N-alkylpyrrolidines, pyrazines, and sesquiterpenoids, some of which were previously reported as repellents, defence compounds or defence pheromones in other organisms, and as sex pheromones in a treefrog. Interestingly, six of the remaining compounds were identified as alkaloids previously reported in other toxic/unpalatable dendrobatid frogs. CONCLUSIONS: This is the first report of alkaloids and VOCs found in the Silverstoneia genus, which has been assumed for decades as non-chemically defended. This study establishes HS-SPME/GC-MS as a new application for a simultaneous approach to amphibian alkaloids and VOCs in poison frogs while opens up new research questions to assess the co-occurrence of both type of compounds and to investigate the evolutionary significance of a defence gradient that includes olfactory avoidance, unpalatability, and toxicity in dendrobatids. In addition, our results show that amphibian alkaloids could have a dual function (olfactory at distance, taste by contact) never explored before neither in Silverstonaeia nor in any other dendrobatid species.

5.
Proc Biol Sci ; 286(1901): 20182769, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991931

RESUMO

Defended species are often conspicuous and this is thought to be an honest signal of defences, i.e. more toxic prey are more conspicuous. Neotropical butterflies of the large Ithomiini tribe numerically dominate communities of chemically defended butterflies and may thus drive the evolution of mimetic warning patterns. Although many species are brightly coloured, most are transparent to some degree. The evolution of transparency from a warning-coloured ancestor is puzzling as it is generally assumed to be involved in concealment. Here, we show that transparent Ithomiini species are indeed less detectable by avian predators (i.e. concealment). Surprisingly, transparent species are not any less unpalatable, and may in fact be more unpalatable than opaque species, the latter spanning a larger range of unpalatability. We put forth various hypotheses to explain the evolution of weak aposematic signals in these butterflies and other cryptic defended prey. Our study is an important step in determining the selective pressures and constraints that regulate the interaction between conspicuousness and unpalatability.


Assuntos
Mimetismo Biológico , Borboletas/fisiologia , Cadeia Alimentar , Pigmentação , Paladar , Animais , Evolução Biológica , Galinhas , Cor , Especificidade da Espécie
6.
J Chem Ecol ; 43(5): 480-486, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28393296

RESUMO

Many insect species sequester compounds acquired from their host plants for defense against natural enemies. The distribution of these compounds is likely to affect both their efficacy as defenses, and their costs. In this study we examined the distribution of sequestered iridoid glycosides (IGs) in two congeneric species of nymphalid butterfly, Euphydryas anicia and E. phaeton, and found that the pattern of localization of IGs differed between the two species. Although IG concentrations were quite high in the heads of both species, the relative concentrations in wings and abdomens differed substantially. Euphydryas anicia had relatively high IG concentrations in their abdomens and low IG concentrations in their wings, whereas the reverse was true in E. phaeton. We interpret these results in light of two current hypotheses regarding where sequestered chemicals should be localized: that they should be found in wings, which would allow non-lethal sampling by predators; and that their distribution is constrained by the distribution of tissue types to which sequestered compounds bind. We also offer the third hypothesis, that costs of storage may differ among body parts, and that the localization of compounds may reflect a cost-reduction strategy. Results from E. phaeton were consistent with all three of these non-mutually exclusive hypotheses, whereas results from E. anicia were only consistent with the notion that tissue bias among body parts plays a role in IG distribution. The finding that these two congeneric butterflies exhibit different patterns of IG localization suggests that they have been shaped by different selection regimes.


Assuntos
Borboletas/química , Glicosídeos Iridoides/análise , Animais , Borboletas/metabolismo , Cromatografia Gasosa , Feminino , Glicosídeos Iridoides/isolamento & purificação , Masculino , Tórax/química , Tórax/metabolismo , Asas de Animais/química , Asas de Animais/metabolismo
7.
Insects ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661966

RESUMO

Many insects display a cryptic color to avoid detection by predators that search for prey by sight. However, some species with chemicals that predators dislike may display a warning color (aposematism) to predators. The predators can learn easier that the species is unsuitable as prey if the color is more conspicuous. Therefore, it is assumed that the acquisition of the warning color requires not only unpalatability, but also exposure of the color to predators and the ability of predators to recognize and learn it unpalatable. In the moths of the subfamily Ennominae, almost all of genera produce uniformly brown or green pupae, but the pupae of the genus Cystidia have conspicuous coloration of yellow background and black spots. In this study, to clarify whether the color of these pupae is the warning color or not, we compared the coloration, pupation site, and palatability among the three species of this genus: C. couaggaria, C. truncangulata, and C. stratonice. Learning by the predators was also examined using lizards as a potential predator of the moths. The results showed that all three species were repelled (unpalatable) by the lizards, and that repeated providing of the pupae to the lizards decreased their willingness to prey on them (probably due to learning). Pupation sites of C. couaggaria and C. truncangulata were located on the surface of branches and leaves high above the ground, whereas C. stratonice pupated in the space of leaves spun with course silk at lower site above the ground. Thus, the conspicuous coloration of pupal Cystidia is considered to be a warning color, but the pupae of C. stratonice are more blackish than those of the most closely related C. truncangulata. The pupal color of C. stratonice is likely to have a dual meaning as cryptic and warning colors. The dark colored pupa may be inconspicuous when hidden within the leaf space, but once detected by the predators, the yellow color of the pupa may function as a warning color.

8.
Zoology (Jena) ; 119(3): 169-174, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26831358

RESUMO

Frogs in the family Dendrobatidae are well known for their conspicuous colors and variable alkaloid-based chemical defenses. The aposematic coloration in dendrobatid frogs appears to deter predators with color vision, but relatively little is known about how these frogs are protected and their defenses are perceived by non-color vision dominated predators. The neotropical bullet ant Paraponera clavata and the red-legged banana spider Cupiennius coccineus are predators that avoid adults of the dendrobatid Oophaga pumilio, but readily consume non-toxic frogs. Juvenile O. pumilio possess the same warning coloration as adult O. pumilio, but may be more palatable given that they have lower quantities of defensive chemicals. This may provide juvenile O. pumilio protection from color-sighted predators, while leaving them susceptible to predators that use chemoreception. To test this hypothesis, we presented juveniles and adults of both O. pumilio and the non-chemically defended frog Craugastor bransfordii to bullet ants and banana spiders. Both bullet ants and banana spiders preyed upon C. bransfordii significantly more than on O. pumilio. Adult and juvenile C. bransfordii experienced similar predation rates by both predators. The life stage of O. pumilio significantly predicted predation by bullet ants, with juveniles being consumed significantly more often than adults. However, the life stage of O. pumilio did not predict predation by banana spiders, as no adults or juveniles were consumed. Our study provides evidence that bullet ants can detect differences in chemical defenses between juvenile and adult O. pumilio, resulting in differential predation on the more palatable juvenile frogs. The avoidance of both adults and juveniles by C. coccineus suggests the alkaloids in O. pumilio act as an effective chemical deterrent to banana spiders, regardless of quantity. Overall, our results suggest that differences in alkaloid defenses among life stages in O. pumilio correspond to differences in relative palatability to at least one arthropod predator.


Assuntos
Artrópodes/fisiologia , Estágios do Ciclo de Vida , Comportamento Predatório/fisiologia , Ranidae/crescimento & desenvolvimento , Animais
9.
Oecologia ; 100(4): 421-429, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28306931

RESUMO

Chrysomelid larvae of the subfamily Galerucinae, tribe Galerucini, are known to contain 1,8-dihydroxylated 9,10-anthraquinones. Since nonhydroxylated 9,10-anthraquinone is the active agent in several commercial products sold to protect seeds against birds, we suggested that the naturally occurring dihydroxylated anthraquinones of galerucine larvae may also act as protective devices against bird predation. Tits (Parus spp.) are potential predators of larvae of the tansy leaf beetle, Galeruca tanaceti, and the elm leaf beetle, Xanthogaleruca luteola. To investigate the palatability of these chrysomelid larvae to birds, we offered them with mealworms and Calliphora pupae, respectively, as controls in dual choice bioassays to eight singly kept, naive tits (five P. major and three P. ater individuals). The bioassays were limited to 5 days, during which larvae were offered daily for 2 h (X. luteola) and 3 h (G. tanaceti), respectively. Every day, the birds significantly avoided uptake of G. tanaceti and X. luteola. More than 98% of the control food was consumed daily, whereas the percentage of chrysomelid larvae totally eaten never surpassed 6.6% for G. tanaceti and 51.8% for X. luteola. In order to determine whether this avoidance was due to the anthraquinones of the chrysomelid larvae, mealworms and Calliphora pupae, respectively, were treated with these compounds in concentrations equivalent to the natural ones. Dual choice bioassays with treated and untreated prey were conducted, again for 5 days with a daily 2- or 3-h test period, respectively. The tits ate all or nearly all treated and untreated food items every day. However, during the 5-day test period the tits learnt to take up the control insects significantly earlier than the treated ones; the food containing anthraquinones was not consumed as readily as the control, which suggest aversive learning based on distastefulness. The efficiency of anthraquinones in protecting galerucine larvae against bird predation is discussed with special respect to learning behavior and factors which might delay or mask learning of avoidance.

10.
Evolution ; 45(4): 918-934, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28564042

RESUMO

Batesian and Müllerian mimicry relationships differ greatly in terms of selective pressures affecting the participants; hence, accurately characterizing a mimetic interaction is a crucial prerequisite to understanding the selective milieux of model, mimic, and predator. Florida viceroy butterflies (Limenitis archippus floridensis) are conventionally characterized as palatable Batesian mimics of distasteful Florida queens (Danaus gilippus berenice). However, recent experiments indicate that both butterflies are moderately distasteful, suggesting they may be Müllerian comimics. To directly test whether the butterflies exemplify Müllerian mimicry, I performed two reciprocal experiments using red-winged blackbird predators. In Experiment 1, each of eight birds was exposed to a series of eight queens as "models," then offered four choice trials involving a viceroy (the putative "mimic") versus a novel alternative butterfly. If mimicry was effective, viceroys should be attacked less than alternatives. I also compared the birds' reactions to solo viceroy "mimics" offered before and after queen models, hypothesizing that attack rate on the viceroy would decrease after birds had been exposed to queen models. In Experiment 2, 12 birds were tested with viceroys as models and queens as putative mimics. The experiments revealed that (1) viceroys and queens offered as models were both moderately unpalatable (only 16% entirely eaten), (2) some birds apparently developed conditioned aversions to viceroy or queen models after only eight exposures, (3) in the subsequent choice trials, viceroy and queen "mimics" were attacked significantly less than alternatives, and (4) solo postmodel mimics were attacked significantly less than solo premodel mimics. Therefore, under these experimental conditions, sampled Florida viceroys and queens are comimics and exemplify Müllerian, not Batesian, mimicry. This compels a reassessment of selective forces affecting the butterflies and their predators, and sets the stage for a broader empirical investigation of the ecological and evolutionary dynamics of mimicry.

11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA