Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522519

RESUMO

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Assuntos
Membrana Celular , Ebolavirus , Montagem de Vírus , Liberação de Vírus , Humanos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Ebolavirus/genética , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Mutação , Nucleoproteínas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Ligação Proteica , Eletricidade Estática , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Vírion/metabolismo , Vírion/genética
2.
J Lipid Res ; 65(3): 100512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295986

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisina/metabolismo , Sítios de Ligação , Lipídeos , Ligação Proteica
3.
J Biol Chem ; 298(7): 102025, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35568195

RESUMO

Ebola virus (EBOV) infections continue to pose a global public health threat, with high mortality rates and sporadic outbreaks in Central and Western Africa. A quantitative understanding of the key processes driving EBOV assembly and budding could provide valuable insights to inform drug development. Here, we use a computational model to evaluate EBOV matrix assembly. Our model focuses on the assembly kinetics of VP40, the matrix protein in EBOV, and its interaction with phosphatidylserine (PS) in the host cell membrane. It has been shown that mammalian cells transfected with VP40-expressing plasmids are capable of producing virus-like particles (VLPs) that closely resemble EBOV virions. Previous studies have also shown that PS levels in the host cell membrane affects VP40 association with the plasma membrane inner leaflet and that lower membrane PS levels result in lower VLP production. Our computational findings indicate that PS may also have a direct influence on VP40 VLP assembly and budding, where a higher PS level will result in a higher VLP budding rate and filament dissociation rate. Our results further suggest that the assembly of VP40 filaments follow the nucleation-elongation theory, where initialization and oligomerization of VP40 are two distinct steps in the assembly process. Our findings advance the current understanding of VP40 VLP formation by identifying new possible mechanisms of PS influence on VP40 assembly. We propose that these mechanisms could inform treatment strategies targeting PS alone or in combination with other VP40 assembly steps.


Assuntos
Ebolavirus , Fosfatidilserinas , Proteínas da Matriz Viral , Montagem de Vírus , Animais , Ebolavirus/fisiologia , Modelos Moleculares , Fosfatidilserinas/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus
4.
J Virol ; 96(6): e0202621, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107375

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW domain-containing host interactors via its conserved PPxY late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ, and WWOX. In addition to host WW domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 virus-like particles (VLPs) and recombinant vesicular stomatitis virus (VSV) M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY-WW domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola virus [EBOV] and Marburg virus [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the filovirus matrix protein VP40 to regulate VP40-mediated egress of virus-like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus life cycle and the host cell.


Assuntos
Ebolavirus , Marburgvirus , Oxidorredutase com Domínios WW , Angiomotinas/metabolismo , Ebolavirus/fisiologia , Humanos , Marburgvirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/fisiologia , Oxidorredutase com Domínios WW/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047270

RESUMO

The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina's capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of -8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 µM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (-46.97 to -118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Doença pelo Vírus Ebola/metabolismo , Proteínas Virais/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Ebolavirus/metabolismo
6.
J Biol Chem ; 296: 100796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019871

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de Vírus
7.
Proteins ; 90(2): 340-350, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431571

RESUMO

Outbreaks of the Ebola virus (EBOV) continue to occur and while a vaccine and treatment are now available, there remains a dearth of options for those who become sick with EBOV disease. An understanding at the atomic and molecular level of the various steps in the EBOV replication cycle can provide molecular targets for disrupting the virus. An important step in the EBOV replication cycle is the transport of EBOV structural matrix VP40 protein molecules to the plasma membrane inner leaflet, which involves VP40 binding to the host cell's Sec24c protein. Though some VP40 residues involved in the binding are known, the molecular details of VP40-Sec24c binding are not known. We use various molecular computational techniques to investigate the molecular details of how EBOV VP40 binds with the Sec24c complex of the ESCRT-I pathway. We employed different docking programs to identify the VP40-binding site on Sec24c and then performed molecular dynamics simulations to determine the atomic details and binding interactions of the complex. We also investigated how the inter-protein interactions of the complex are affected upon mutations of VP40 amino acids in the Sec24c-binding region. Our results provide a molecular basis for understanding previous coimmunoprecipitation experimental studies. In addition, we found that VP40 can bind to a site on Sec24c that can also bind Sec23 and suggests that VP40 may use the COPII transport mechanism in a manner that may not need the Sec23 protein in order for VP40 to be transported to the plasma membrane.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Proteínas de Transporte Vesicular , Proteínas da Matriz Viral , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
8.
J Struct Biol ; 213(2): 107742, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971285

RESUMO

Cryo-electron tomography (cryo-ET) is a pivotal imaging technique for studying the structure of pleomorphic enveloped viruses and their interactions with the host at native conditions. Owing to the limited tilting range of samples with a slab geometry, electron tomograms suffer from so-called missing wedge information in Fourier space. In dual-axis cryo-ET, two tomograms reconstructed from orthogonally oriented tilt series are combined into a tomogram with improved resolution as the missing wedge information is reduced to a pyramid. Volta phase plate (VPP) allows to perform in-focus cryo-ET with high contrast transfer at low-resolution frequencies and thus its application may improve the quality of dual-axis tomograms. Here, we compare dual-axis cryo-ET with and without VPP on Ebola virus-like particles to visualize and segment viral and host cell proteins within the membrane-enveloped filamentous particles. Dual-axis VPP cryo-ET reduces the missing wedge information and ray artifacts arising from the weighted back-projection during tomogram reconstruction, thereby minimizing ambiguity in the analysis of crowded environments and facilitating 3D segmentation. We show that dual-axis VPP tomograms provide a comprehensive description of macromolecular organizations such as nucleocapsid assembly states, the distribution of glycoproteins on the viral envelope and asymmetric arrangements of the VP40 layer in non-filamentous regions of virus-like particles. Our data reveal actin filaments within virus-like particles in close proximity to the viral VP40 scaffold, suggesting a direct interaction between VP40 and actin filaments. Dual-axis VPP cryo-ET provides more complete 3D information at high contrast and allows for better interpretation of macromolecule interactions and pleomorphic organizations.


Assuntos
Actinas/química , Microscopia Crioeletrônica/métodos , Ebolavirus/química , Proteínas da Matriz Viral/química , Actinas/metabolismo , Membrana Celular , Ebolavirus/metabolismo , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Células HEK293 , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Imageamento Tridimensional , Nucleocapsídeo/química , Proteínas da Matriz Viral/metabolismo
9.
Semin Cell Dev Biol ; 83: 8-11, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29571970

RESUMO

Although largely less numerous and characterized than bacterial secreted effectors, several viral virulence factors are secreted by virus infected cells. However, their mode of secretion only starts to be studied at the molecular level. Several of these viral effectors are secreted using an unconventional secretion pathway, i.e. despite the lack of signal sequence. We here review recent results illustrating the diversity of these pathways. In the case of HIV-1 proteins Tat and matrix (p17) proteins, secretion directly takes place at the plasma membrane level following binding to PI(4,5)P2. The secretion of HTLV-I Tax was found to partly rely on exocytic pathway intermediates. The secretion pathways of VP22 of Herpes simplex virus type I and VP40 of the Ebola virus are less well characterized but VP40 can be recruited to the plasma membrane by PI(4,5)P2 that thus appears as a key partner enabling the unconventional secretion of many viral proteins. Several studies indicated that circulating retroviral transactivating proteins Tat and Tax are involved in the development of AIDS and HTLV-I associated myelopathy/tropical spastic paraparesis, respectively.


Assuntos
Via Secretória/fisiologia , Proteínas Virais/metabolismo , Humanos
10.
Biochem Biophys Res Commun ; 527(2): 387-392, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32327259

RESUMO

Ebola virus is a member of Filoviridae family of viruses that causes fetal hemorrhagic fever in human. Matrix protein VP40 of the Ebola virus is involved in multiple stages of viral maturation processes. In order to fully understand the interacting partners of VP40 in host cells, we applied proximity-dependent biotin-identification (BioID) approach to systematically screen for potential proteins at different time points of VP40 expression. By immunoprecipitation and subsequent proteomics analysis, we found over 100 candidate proteins with various cellular components and molecular functions. Among them, we identified Rab14 GTPase that appears to function at the late stage of VP40 expression. Imaging studies demonstrated that VP40 and Rab14 have substantial colocalization when expressed in HeLa cells. Overexpression of the dominant-negative Rab14(S25N) diminished the plasma membrane (PM) localization of VP40. In addition, we found that secreted VP40 protein can be endocytosed into Rab14 positive compartments. In summary, our study provides evidence that Rab14 is a novel regulator of the intracellular trafficking of Ebola virus matrix protein VP40 in HeLa cells.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Mapas de Interação de Proteínas , Transporte Proteico
11.
J Biol Chem ; 293(9): 3335-3349, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348171

RESUMO

Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription. VP40 associates with plasma-membrane lipids such as phosphatidylserine (PS), and this association is critical to budding from the host cell. However, it is poorly understood how different VP40 structures interact with PS, what essential residues are involved in this association, and whether VP40 has true selectivity for PS among different glycerophospholipid headgroups. In this study, we used lipid-binding assays, MD simulations, and cellular imaging to investigate the molecular basis of VP40-PS interactions and to determine whether different VP40 structures (i.e. monomer, dimer, and octamer) can interact with PS-containing membranes. Results from quantitative analysis indicated that VP40 associates with PS vesicles via a cationic patch in the C-terminal domain (Lys224, 225 and Lys274, 275). Substitutions of these residues with alanine reduced PS-vesicle binding by >40-fold and abrogated VP40 localization to the plasma membrane. Dimeric VP40 had 2-fold greater affinity for PS-containing membranes than the monomer, whereas binding of the VP40 octameric ring was reduced by nearly 10-fold. Taken together, these results suggest the different VP40 structures known to form in the viral life cycle harbor different affinities for PS-containing membranes.


Assuntos
Ebolavirus/metabolismo , Fosfatidilserinas/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Membrana Celular/metabolismo , Ebolavirus/fisiologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Especificidade por Substrato , Proteínas da Matriz Viral/genética
12.
J Gen Virol ; 100(7): 1099-1111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31184566

RESUMO

Ebola virus (EBOV) VP40 is a major driving force of nascent virion production and a negative regulator of genome replication/transcription. Here, we showed that the YIGL sequence at the C-terminus of EBOV VP40 is important for virus-like particle (VLP) production and the regulation of genome replication/transcription. Accordingly, a mutation in the YIGL sequence caused defects in VLP production and genome replication/transcription. The residues I293 and L295 in the YIGL sequence were particularly critical for VLP production. Furthermore, an in silico analysis indicated that the amino acids surrounding the YIGL sequence contribute to intramolecular interactions within VP40. Among those surrounding residues, F209 was shown to be critical for VLP production. These results suggested that the VP40 YIGL sequence regulates two different viral replication steps, VLP production and genome replication/transcription, and the nearby residue F209 influences VLP production.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Vírion/fisiologia , Replicação Viral , Motivos de Aminoácidos , Sequência de Aminoácidos , Ebolavirus/química , Ebolavirus/genética , Genoma Viral , Humanos , Alinhamento de Sequência , Proteínas da Matriz Viral/genética , Vírion/química , Vírion/genética , Liberação de Vírus
13.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514907

RESUMO

Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-ß), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas da Matriz Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Embrião de Galinha , República Democrática do Congo , Células Dendríticas/imunologia , Ebolavirus/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon beta/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Sudão , Vacinação , Vacinas de DNA , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Vacinas Virais/genética
14.
Mol Biol Rep ; 46(3): 3315-3324, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30982214

RESUMO

Ebola virus is a virulent pathogen that causes highly lethal hemorrhagic fever in human and non-human species. The rapid growth of this virus infection has made the scenario increasingly complicated to control the disease. Receptor viral matrix protein (VP40) is highly responsible for the replication and budding of progeny virus. The binding of RNA to VP40 could be the crucial factor for the successful lifecycle of the Ebola virus. In this study, we aimed to identify the potential drug that could inhibit VP40. Sugar alcohols were enrich with antiviral properties used to inhibit VP40. Virtual screening analysis was perform for the 48 sugar alcohol compounds, of which the following three compounds show the best binding affinity: Sorbitol, Mannitol and Galactitol. To understand the perfect binding orientation and the strength of non-bonded interactions, individual molecular docking studies were perform for the best hits. Further molecular dynamics studies were conduct to analyze the efficacy between the protein-ligand complexes and it was identify that Sorbitol obtains the highest efficacy. The best-screened compounds obtained drug-like property and were less toxic, which could be use as a potential lead compound to develop anti-Ebola drugs.


Assuntos
Antivirais/farmacologia , Ebolavirus/metabolismo , Álcoois Açúcares/farmacologia , Proteínas da Matriz Viral/antagonistas & inibidores , Antivirais/química , Simulação por Computador , Galactitol/farmacologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Ligantes , Manitol/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Sorbitol/farmacologia , Álcoois Açúcares/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/ultraestrutura
15.
Crit Rev Biochem Mol Biol ; 51(5): 379-394, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685368

RESUMO

Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.


Assuntos
Multimerização Proteica , Proteínas Virais/química , Viroses/virologia , Vírus/química , Animais , Capsídeo/química , Capsídeo/imunologia , Capsídeo/metabolismo , Ebolavirus/química , Ebolavirus/imunologia , Ebolavirus/metabolismo , Flavivirus/química , Flavivirus/imunologia , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , HIV/química , HIV/imunologia , HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Replicação Viral , Vírus/imunologia , Vírus/metabolismo
16.
J Biol Chem ; 292(15): 6108-6122, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28167534

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers.


Assuntos
Marburgvirus/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilserinas/química , Multimerização Proteica , Proteínas da Matriz Viral/química , Medição da Troca de Deutério , Marburgvirus/genética , Marburgvirus/metabolismo , Espectrometria de Massas , Estrutura Quaternária de Proteína , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
17.
J Gen Virol ; 99(12): 1614-1620, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394868

RESUMO

The Marburg virus (MARV) matrix protein, VP40, is a multifunctional protein that is essential for the assembly and release of viral particles, inhibition of the interferon response and viral transcription/replication. VP40 is assumed to be present as soluble monomers and membrane-bound higher-order oligomers. To investigate the functional relevance of oligomerization and lipid binding of VP40 we constructed mutants with impaired VP40-VP40 or VP40-lipid interactions and tested their capacity to bind the plasma membrane, to form virus-like particles (VLPs) and to inhibit viral RNA synthesis. All of the analysed VP40 mutants formed perinuclear aggregates and were defective in their delivery to the plasma membrane and in VLP production. The VP40 mutants that were competent for oligomerization but lacked VP40-lipid interactions formed fibril-like structures, influenced MARV inclusion body formation and inhibited viral transcription/replication more strongly than the VP40 wild-type. Altogether, mutations that interfere with VP40's transition from monomer to higher-order oligomers and/or lipid interactions destroy the protein's multifunctionality.


Assuntos
Marburgvirus/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Liberação de Vírus , Análise Mutacional de DNA , Metabolismo dos Lipídeos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas da Matriz Viral/genética
18.
Cell Physiol Biochem ; 50(3): 1055-1067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355918

RESUMO

BACKGROUND/AIMS: Monoclonal antibodies (mAbs) are presently the most promising treatment against Ebola virus disease (EVD), and cocktail of two or more antibodies likely confers protection through complementary mechanisms. Zaire Ebolavirus (EBOV) glycoprotein (GP) and viral protein 40 (VP40) are targets for designing neutralizing antibodies. Currently, the antiviral therapeutics of mAb-cocktails are still limited solely to anti-GP antibodies,there is no Abs cocktail against Zaire EBOV GP and VP40, which both have important interactions with host cellular membrane. METHODS: We used hybridoma technology to produce anti-Zaire EBOV GP mAb against GP receptor binding domain, and anti-Zaire EBOV VP40 mAbs against the N-terminal domain, the C-terminal domain, respectively; synthesized Zaire EBOV transcription and replication competent virus like particles (trVLPs), which model even all aspects of the EBOV life cycles in order to evaluate the anti-viral effect of mAbs. Then, we characterized the anti- Zaire EBOV trVLPs effect of anti-GP and VP40 mAbs in vitro by real time-PCR, immunofluorescence assay and western blot analysis. RESULTS: Our results demonstrate that anti-GP or anti-VP40 mAbs effectively inhibit trVLPs replication. The cocktails of anti-GP and anti-VP40 mAbs, or between anti-VP40 mAbs, had synergistic anti-trVLPs effect. Meanwhile, the detailed DNA and amino acid sequences of the mAbs were checked. CONCLUSION: The study verifies neutralizing efficacy of anti-GP or anti-VP40 mAb, report promising cocktail of anti-GP and anti-VP40 mAb, or cocktail of two anti-VP40 mAbs. To our knowledge, this is the first account to report the important anti-viral effect of cocktails of anti-GP and anti-VP40 mAbs in vitro.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/metabolismo , Glicoproteínas/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Reações Antígeno-Anticorpo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Biochem Biophys Res Commun ; 504(4): 635-640, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30205953

RESUMO

Acetylation of histones and other proteins plays crucial roles in transcriptional regulation, chromatin organization, and other biological processes. It has been recently reported that the nucleoprotein (NP) of influenza virus is acetylated in infected cells, and this modification contributes to the RNA polymerization activity of the virus. As the influenza virus, the Ebolavirus contains single-stranded negative-sense RNA as its viral genome, which interacts with NP and other viral proteins. In this study, we performed a series of biochemical experiments and revealed that the recombinant Ebolavirus NP and the viral matrix protein VP40, which binds with NP, were acetylated by eukaryotic histone acetyltransferases, such as P300/CREB-binding protein (P300/CBP) and P300/CBP-associated factor (PCAF), in vitro. Mass spectrometry was used to identify the lysine residues that were potential acetylation targets in NP and VP40. The identified lysine residues in NP were located in the RNA-binding cleft and the VP35-binding domain. Potentially acetylated lysine targets in VP40 were identified in the basic patch, which is necessary for constructing oligomers. These results suggest that the acetylation of these lysine residues is involved in the interactions between viral proteins.


Assuntos
Ebolavirus/metabolismo , Lisina/metabolismo , Nucleoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Ebolavirus/genética , Humanos , Espectrometria de Massas , Nucleoproteínas/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Proteínas da Matriz Viral/genética
20.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878074

RESUMO

BST2 is a host protein with dual functions in response to viral infections: it traps newly assembled enveloped virions at the plasma membrane in infected cells, and it induces NF-κB activity, especially in the context of retroviral assembly. In this study, we examined whether Ebola virus proteins affect BST2-mediated induction of NF-κB. We found that the Ebola virus matrix protein, VP40, and envelope glycoprotein, GP, each cooperate with BST2 to induce NF-κB activity, with maximal activity when all three proteins are expressed. Unlike human immunodeficiency virus type 1 Vpu protein, which antagonizes both virion entrapment and the activation of NF-κB by BST2, Ebola virus GP does not inhibit NF-κB signaling even while it antagonizes the entrapment of virus-like particles. GP from Reston ebolavirus, a nonpathogenic species in humans, showed a phenotype similar to that of GP from Zaire ebolavirus, a highly pathogenic species, in terms of both the activation of NF-κB and the antagonism of virion entrapment. Although Ebola virus VP40 and GP both activate NF-κB independently of BST2, VP40 is the more potent activator. Activation of NF-κB by the Ebola virus proteins either alone or together with BST2 requires the canonical NF-κB signaling pathway. Mechanistically, the maximal NF-κB activation by GP, VP40, and BST2 together requires the ectodomain cysteines needed for BST2 dimerization, the putative BST2 tetramerization residue L70, and Y6 of a potential hemi-ITAM motif in BST2's cytoplasmic domain. BST2 with a glycosylphosphatidylinositol (GPI) anchor signal deletion, which is not expressed at the plasma membrane and is unable to entrap virions, activated NF-κB in concert with the Ebola virus proteins at least as effectively as wild-type BST2. Signaling by the GPI anchor mutant also depended on Y6 of BST2. Overall, our data show that activation of NF-κB by BST2 is independent of virion entrapment in the case of Ebola virus. Nonetheless, BST2 may induce or amplify proinflammatory signaling during Ebola virus infection, potentially contributing to the dysregulated cytokine response that is a hallmark of Ebola virus disease.IMPORTANCE Understanding how the host responds to viral infections informs the development of therapeutics and vaccines. We asked how proinflammatory signaling by the host protein BST2/tetherin, which is mediated by the transcription factor NF-κB, responds to Ebola virus proteins. Although the Ebola virus envelope glycoprotein (GP1,2) antagonizes the trapping of newly formed virions at the plasma membrane by BST2, we found that it does not inhibit BST2's ability to induce NF-κB activity. This distinguishes GP1,2 from the HIV-1 protein Vpu, the prototype BST2 antagonist, which inhibits both virion entrapment and the induction of NF-κB activity. Ebola virus GP1,2, the Ebola virus matrix protein VP40, and BST2 are at least additive with respect to the induction of NF-κB activity. The effects of these proteins converge on an intracellular signaling pathway that depends on a protein modification termed neddylation. Better mechanistic understanding of these phenomena could provide targets for therapies that modulate the inflammatory response during Ebola virus disease.


Assuntos
Antígenos CD/metabolismo , Ebolavirus/metabolismo , NF-kappa B/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Motivos de Aminoácidos , Antígenos CD/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Ebolavirus/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , NF-kappa B/genética , Domínios Proteicos , Multimerização Proteica , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA