Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Immunol ; 44(4): 256-265, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964020

RESUMO

Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.


Assuntos
Anopheles , Malária , Humanos , Animais , Feminino , Anopheles/parasitologia , Anopheles/fisiologia , Saliva , Mosquitos Vetores/parasitologia , Esporozoítos
2.
J Biol Chem ; 299(6): 104824, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196765

RESUMO

With rising cases for the first time in years, malaria remains a significant public health burden. The sexual stage of the malaria parasite infects mosquitoes to transmit malaria from host to host. Hence, an infected mosquito plays an essential role in malaria transmission. Plasmodium falciparum is the most dominant and dangerous malaria pathogen. Previous studies identified a sexual stage-specific protein 16 (Pfs16) localized to the parasitophorous vacuole membrane. Here, we elucidate the function of Pfs16 during malaria transmission. Our structural analysis identified Pfs16 as an alpha-helical integral membrane protein with one transmembrane domain connecting to two regions across parasitophorous vacuole membrane. ELISA assays showed that insect cell-expressed recombinant Pfs16 (rPfs16) interacted with Anopheles gambiae midguts, and microscopy found that rPfs16 was bound to midgut epithelial cells. Transmission-blocking assays demonstrated that polyclonal antibodies against Pfs16 significantly reduced the number of oocysts in mosquito midguts. However, on the contrary, feeding rPfs16 increased the number of oocysts. Further analysis revealed that Pfs16 reduced the activity of mosquito midgut caspase 3/7, a key enzyme in the mosquito Jun-N-terminal kinase immune pathway. We conclude that Pfs16 facilitates parasites to invade mosquito midguts by actively silencing the mosquito's innate immunity through its interaction with the midgut epithelial cells. Therefore, Pfs16 is a potential target to control malaria transmission.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Proteínas de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Proteínas de Protozoários/metabolismo
3.
Infect Immun ; : e0021424, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120148

RESUMO

Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with Borrelia burgdorferi sensu lato bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the B. burgdorferi RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (bbi42, bbk53, and bbq03) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in B. burgdorferi's reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.

4.
Clin Infect Dis ; 78(Suppl 1): S67-S70, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294110

RESUMO

Tularemia is caused by the highly infectious bacterium Francisella tularensis, which is recognized as a Tier 1 bioterrorism agent. Tularemia has a range of recognized clinical manifestations, but fewer than 20 bone or joint infections from 6 countries have been reported in the literature to date. This series includes 13 cases of F. tularensis septic arthritis or osteomyelitis in the United States during 2004-2023 and describes exposures, clinical presentation, diagnosis, and outcomes for this rare but severe form of tularemia. Clinicians should consider F. tularensis in patients with compatible exposures or a history of joint replacement or immunosuppression.


Assuntos
Artrite Infecciosa , Francisella tularensis , Tularemia , Humanos , Estados Unidos/epidemiologia , Tularemia/diagnóstico , Tularemia/epidemiologia , Tularemia/microbiologia , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/epidemiologia
5.
Emerg Infect Dis ; 30(3): 564-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407256

RESUMO

Healthcare providers in North Carolina, USA, have limited experience diagnosing and managing Lyme disease because few cases occur annually statewide. We outline the prolonged diagnostic course for a patient with locally acquired Lyme disease in North Carolina. This case highlights the need for greater awareness and professional education.


Assuntos
Diagnóstico Tardio , Doença de Lyme , Humanos , North Carolina/epidemiologia , Pessoal de Saúde , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia
6.
Emerg Infect Dis ; 30(8): 1599-1608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043406

RESUMO

Bacterial zoonoses are established causes of severe febrile illness in East Africa. Within a fever etiology study, we applied a high-throughput 16S rRNA metagenomic assay validated for detecting bacterial zoonotic pathogens. We enrolled febrile patients admitted to 2 referral hospitals in Moshi, Tanzania, during September 2007-April 2009. Among 788 participants, median age was 20 (interquartile range 2-38) years. We performed PCR amplification of V1-V2 variable region 16S rRNA on cell pellet DNA, then metagenomic deep-sequencing and pathogenic taxonomic identification. We detected bacterial zoonotic pathogens in 10 (1.3%) samples: 3 with Rickettsia typhi, 1 R. conorii, 2 Bartonella quintana, 2 pathogenic Leptospira spp., and 1 Coxiella burnetii. One other sample had reads matching a Neoerhlichia spp. previously identified in a patient from South Africa. Our findings indicate that targeted 16S metagenomics can identify bacterial zoonotic pathogens causing severe febrile illness in humans, including potential novel agents.


Assuntos
Febre , Metagenômica , RNA Ribossômico 16S , Humanos , Tanzânia/epidemiologia , Adulto , Pré-Escolar , Adolescente , Metagenômica/métodos , Febre/microbiologia , Masculino , Feminino , Animais , Criança , RNA Ribossômico 16S/genética , Adulto Jovem , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/diagnóstico , Zoonoses/microbiologia , Zoonoses/epidemiologia
7.
Proc Biol Sci ; 291(2018): 20232432, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471554

RESUMO

Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Modelos Teóricos , Febre do Nilo Ocidental/transmissão
8.
J Virol ; 97(12): e0069523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38051046

RESUMO

IMPORTANCE: Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.


Assuntos
Aedes , Alphavirus , Mosquitos Vetores , Animais , Aedes/fisiologia , Aedes/virologia , Alphavirus/fisiologia , Desidratação
9.
J Virol ; 97(1): e0177822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598200

RESUMO

Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.


Assuntos
Aedes , Infecções por Alphavirus , Coinfecção , Superinfecção , Infecção por Zika virus , Animais , Humanos , Aedes/virologia , Alphavirus , Infecções por Alphavirus/complicações , Infecções por Alphavirus/virologia , Mosquitos Vetores/virologia , Vertebrados/virologia , Zika virus , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
10.
J Transl Med ; 22(1): 81, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245788

RESUMO

BACKGROUND: The long-term impact of COVID-19-associated public health interventions on zoonotic and vector-borne infectious diseases (ZVBs) remains uncertain. This study sought to examine the changes in ZVBs in China during the COVID-19 pandemic and predict their future trends. METHODS: Monthly incidents of seven ZVBs (Hemorrhagic fever with renal syndrome [HFRS], Rabies, Dengue fever [DF], Human brucellosis [HB], Leptospirosis, Malaria, and Schistosomiasis) were gathered from January 2004 to July 2023. An autoregressive fractionally integrated moving average (ARFIMA) by incorporating the COVID-19-associated public health intervention variables was developed to evaluate the long-term effectiveness of interventions and forecast ZVBs epidemics from August 2023 to December 2025. RESULTS: Over the study period, there were 1,599,647 ZVBs incidents. HFRS and rabies exhibited declining trends, HB showed an upward trajectory, while the others remained relatively stable. The ARFIMA, incorporating a pulse pattern, estimated the average monthly number of changes of - 83 (95% confidence interval [CI] - 353-189) cases, - 3 (95% CI - 33-29) cases, - 468 (95% CI - 1531-597) cases, 2191 (95% CI 1056-3326) cases, 7 (95% CI - 24-38) cases, - 84 (95% CI - 222-55) cases, and - 214 (95% CI - 1036-608) cases for HFRS, rabies, DF, HB, leptospirosis, malaria, and schistosomiasis, respectively, although these changes were not statistically significant besides HB. ARFIMA predicted a decrease in HB cases between August 2023 and December 2025, while indicating a relative plateau for the others. CONCLUSIONS: China's dynamic zero COVID-19 strategy may have exerted a lasting influence on HFRS, rabies, DF, malaria, and schistosomiasis, beyond immediate consequences, but not affect HB and leptospirosis. ARFIMA emerges as a potent tool for intervention analysis, providing valuable insights into the sustained effectiveness of interventions. Consequently, the application of ARFIMA contributes to informed decision-making, the design of effective interventions, and advancements across various fields.


Assuntos
COVID-19 , Febre Hemorrágica com Síndrome Renal , Leptospirose , Malária , Raiva , Esquistossomose , Doenças Transmitidas por Vetores , Humanos , Estações do Ano , Febre Hemorrágica com Síndrome Renal/epidemiologia , Saúde Pública , Análise de Séries Temporais Interrompida , Pandemias , Raiva/epidemiologia , Raiva/prevenção & controle , Incidência , COVID-19/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia , China/epidemiologia , Leptospirose/epidemiologia , Esquistossomose/epidemiologia
11.
Malar J ; 23(1): 189, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880891

RESUMO

BACKGROUND: Malaria, a prominent vector borne disease causing over a million annual cases worldwide, predominantly affects vulnerable populations in the least developed regions. Despite their preventable and treatable nature, malaria remains a global public health concern. In the last decade, India has faced a significant decline in malaria morbidity and mortality. As India pledged to eliminate malaria by 2030, this study examined a decade of surveillance data to uncover space-time clustering and seasonal trends of Plasmodium vivax and Plasmodium falciparum malaria cases in West Bengal. METHODS: Seasonal and trend decomposition using Loess (STL) was applied to detect seasonal trend and anomaly of the time series. Univariate and multivariate space-time cluster analysis of both malaria cases were performed at block level using Kulldorff's space-time scan statistics from April 2011 to March 2021 to detect statistically significant space-time clusters. RESULTS: From the time series decomposition, a clear seasonal pattern is visible for both malaria cases. Statistical analysis indicated considerable high-risk P. vivax clusters, particularly in the northern, central, and lower Gangetic areas. Whereas, P. falciparum was concentrated in the western region with a significant recent transmission towards the lower Gangetic plain. From the multivariate space-time scan statistics, the co-occurrence of both cases were detected with four significant clusters, which signifies the regions experiencing a greater burden of malaria cases. CONCLUSIONS: Seasonal trends from the time series decomposition analysis show a gradual decline for both P. vivax and P. falciparum cases in West Bengal. The space-time scan statistics identified high-risk blocks for P. vivax and P. falciparum malaria and its co-occurrence. Both malaria types exhibit significant spatiotemporal variations over the study area. Identifying emerging high-risk areas of P. falciparum malaria over the Gangetic belt indicates the need for more research for its spatial shifting. Addressing the drivers of malaria transmission in these diverse clusters demands regional cooperation and strategic strategies, crucial steps towards overcoming the final obstacles in malaria eradication.


Assuntos
Malária Falciparum , Malária Vivax , Plasmodium vivax , Estações do Ano , Índia/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Humanos , Plasmodium vivax/fisiologia , Conglomerados Espaço-Temporais , Plasmodium falciparum/fisiologia
12.
BMC Infect Dis ; 24(1): 1056, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333905

RESUMO

BACKGROUND: Dengue is a vector-borne viral infection caused by the dengue virus transmitted to humans primarily by Aedes aegypti. The year 2024 has been a historic year for dengue in Brazil, with the highest number of probable cases ever registered. Herein, we analyze the temporal trend and spatio-temporal dynamics of dengue cases in Brazil during the first nine epidemiological weeks (EW) of 2024. METHODS: This is an ecological study, including all probable cases of dengue in Brazil during the period, carried out in two steps: time series analysis to assess the temporal trend and spatial analysis to identify high-risk clusters. RESULTS: 1,345,801 probable cases of dengue were reported. The regions with the highest increasing trend were the Northeast with an average epidemiologic week percent change (AEPC) of 52.4 (95% CI: 45.5-59.7; p < 0.001) and the South with 35.9 (95% CI: 27.7-44.5; p < 0.001). There was a statistically significant increasing trend in all states, except Acre (AEPC = -4.1; 95% CI: -16.3-10; p = 0.55), Amapá (AEPC = 1.3; 95% CI: -16.2-22.3; p = 0.9) and Espírito Santo (AEPC = 8.9; 95% CI: -15.7-40.6; p = 0.5). The retrospective space-time analysis showed a cluster within the Northeast, Central-West and Southeast regions, with a radius of 515.3 km, in which 1,267 municipalities and 525,324 of the cases were concentrated (RR = 6.3; p < 0.001). Regarding the spatial variation of the temporal trend, 21 risk areas were found, all of them located in Southeast or Central-West states. The area with the highest relative risk was Minas Gerais state, where 5,748 cases were concentrated (RR = 8.1; p < 0.001). Finally, a purely spatial analysis revealed 25 clusters, the one with the highest relative risk being composed of two municipalities in Acre (RR = 6.9; p < 0.001). CONCLUSIONS: We described a detailed temporal-spatial analysis of dengue cases in the first EWs of 2024 in Brazil, which were mainly concentrated in the Southeast and Central-West regions. Overall, it is recommended that governments adopt public policies to control the the vector population in high-risk areas, as well as to prevent the spread of dengue fever to other areas of Brazil.


Assuntos
Aedes , Dengue , Epidemias , Análise Espaço-Temporal , Brasil/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Humanos , Epidemias/estatística & dados numéricos , Aedes/virologia , Animais , Tomada de Decisões , Mosquitos Vetores/virologia , Vírus da Dengue
13.
BMC Infect Dis ; 24(1): 1066, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342094

RESUMO

BACKGROUND: Scrub typhus (ST, also known as tsutsugamushi disease) is a common febrile vector-borne disease in South Korea and commonly known as autumn- and female-dominant disease. Although understanding changes in seasonality and sex differences in ST is essential for preparing health interventions, previous studies have not dealt with variations in periodicity and demographic characteristics in detail. Therefore, we aimed to quantify the temporal dynamics of seasonal patterns and sex differences in the incidence of ST in South Korea. METHODS: We extracted epidemiological week (epi-week)-based ST cases from 2003 to 2019 Korean National Health Insurance Service data (ICD-10-CM code: A75.3). To determine changes in seasonality and sex differences, year-, sex-, and age-group-stratified male-to-female ratios and wavelet transform analyses were conducted. RESULTS: Between 2003 and 2019, 213,976 ST cases were identified. The incidence per 100,000 population increased by 408.8% from 9.1 in 2003 to 37.2 in 2012, and subsequently decreased by 59.7% from 2012 to 15.0 in 2019. According to the continuous wavelet transform results, ST exhibited a dual seasonal pattern with dominant seasonality in autumn and smaller seasonality in spring from 2005 to 2019. Overall, the periodicity of seasonality decreased, whereas its strength decreased in autumn and increased in spring. With an overall male-to-female ratio being 0.68:1, the ratio has increased from 0.67:1 in 2003 to 0.78:1 in 2019 (Kendall's τ = 0.706, p < 0.001). However, interestingly, the ratio varied significantly across different age groups. CONCLUSIONS: Our findings quantitatively demonstrated changes in seasonality with dual seasonal pattern and shortened overall periodicity and a decrease in sex differences of ST in South Korea. Our study suggests the need for continuous surveillance on populations of vector and host to address ST dynamics to preemptively prepare against global warming.


Assuntos
Tifo por Ácaros , Estações do Ano , Análise de Ondaletas , Tifo por Ácaros/epidemiologia , Humanos , República da Coreia/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Criança , Idoso , Adulto Jovem , Incidência , Pré-Escolar , Lactente , Idoso de 80 Anos ou mais , Razão de Masculinidade , Recém-Nascido , Fatores Sexuais
14.
BMC Public Health ; 24(1): 294, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267914

RESUMO

BACKGROUND: The implementation of cost-effective surveillance systems is essential for tracking the emerging risk of tick-borne diseases. In Canada, where Lyme disease is a growing public health concern, a national sentinel surveillance network was designed to follow the epidemiological portrait of this tick-borne disease across the country. The surveillance network consists of sentinel regions, with active drag sampling carried out annually in all regions to assess the density of Ixodes spp. ticks and prevalence of various tick-borne pathogens in the tick population. The aim of the present study was to prioritize sentinel regions by integrating different spatial criteria relevant to the surveillance goals. METHODS: We used spatially-explicit multi-criteria decision analyses (MCDA) to map priority areas for surveillance across Canada, and to evaluate different scenarios using sensitivity analyses. Results were shared with stakeholders to support their decision making for the selection of priority areas to survey during active surveillance activities. RESULTS: Weights attributed to criteria by decision-makers were overall consistent. Sensitivity analyses showed that the population criterion had the most impact on rankings. Thirty-seven sentinel regions were identified across Canada using this systematic and transparent approach. CONCLUSION: This novel application of spatial MCDA to surveillance network design favors inclusivity of nationwide partners. We propose that such an approach can support the standardized planning of spatial design of sentinel surveillance not only for vector-borne disease BDs, but more broadly for infectious disease surveillance where spatial design is an important component.


Assuntos
Doença de Lyme , Doenças Transmitidas por Carrapatos , Humanos , Doenças Transmitidas por Carrapatos/epidemiologia , Canadá/epidemiologia , Saúde Pública , Técnicas de Apoio para a Decisão
15.
BMC Public Health ; 24(1): 1781, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965485

RESUMO

BACKGROUND: Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS: Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS: Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION: This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Países Baixos , Humanos , Espanha , Estudos Transversais , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Animais , Adulto Jovem , Culicidae , Mosquitos Vetores , Controle de Mosquitos/métodos , Adolescente , Intenção , Inquéritos e Questionários , Idoso
16.
Euro Surveill ; 29(10)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456216

RESUMO

Aligned with the Sustainable Development Goals, nature-based solutions such as urban greening e.g. public gardens, urban forests, parks and street trees, which aim to protect, sustainably manage or restore an ecosystem, have emerged as a promising tool for improving the health and well-being of an ever-increasing urban population. While urban greening efforts have undeniable benefits for human health and the biological communities inhabiting these green zones, disease vector populations may also be affected, possibly promoting greater pathogen transmission and the emergence of infectious diseases such as dengue, West Nile fever, malaria, leishmaniosis and tick-borne diseases. Evidence for the impact of urban green areas on vector-borne disease (VBD) transmission is scarce. Furthermore, because of vast disparities between cities, variation in green landscapes and differing scales of observation, findings are often contradictory; this calls for careful assessment of how urban greening affects VBD risk. Improved understanding of the effect of urban greening on VBDs would support planning, monitoring and management of green spaces in cities to sustainably mitigate VBD risks for surrounding urban populations.


Assuntos
Doenças Transmissíveis , Malária , Humanos , Cidades , Ecossistema , População Urbana
18.
Emerg Infect Dis ; 29(4): 806-808, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958014

RESUMO

Tularemia was diagnosed for a 33-year-old pregnant woman in Serbia after a swollen neck lymph node was detected at gestation week 18. Gentamicin was administered parenterally (120 mg/d for 7 d); the pregnancy continued with no complications and a healthy newborn was delivered. Treatment of tularemia optimizes maternal and infant outcomes.


Assuntos
Francisella tularensis , Linfadenopatia , Tularemia , Feminino , Gravidez , Recém-Nascido , Humanos , Adulto , Animais , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Gestantes , Sérvia/epidemiologia , Zoonoses/diagnóstico
19.
Proc Biol Sci ; 290(2011): 20231581, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018102

RESUMO

Mosquito-borne diseases (MBDs) threaten public health and food security globally. We provide the first biogeographic description of the African mosquito fauna (677 species) and the 151 mosquito-borne pathogens (MBPs) they transmit. While mosquito species richness agrees with expectations based on Africa's land surface, African arboviruses and mammalian plasmodia are more speciose than expected. Species assemblages of mosquitoes and MBPs similarly separate sub-Saharan Africa from North Africa, and those in West and Central Africa from eastern and southern Africa. Similarities between mosquitoes and MBPs in diversity and range size suggest that mosquitoes are key in delimiting the range of MBPs. With approximately 25% endemicity, approximately 50% occupying one to three countries and less than 5% occupying greater than 25 countries, the ranges of mosquitoes and MBPs are surprisingly small, suggesting that most MBPs are transmitted by a single mosquito species. Exceptionally widespread mosquito species feed on people and livestock, and most are high-altitude-windborne migrants. Likewise, widespread MBPs are transmitted among people or livestock by widespread mosquitoes, suggesting that adapting to people or livestock and to widespread mosquito species promote range expansion in MBPs. Range size may predict range expansion and emergence risk. We highlight key knowledge gaps that impede prediction and mitigation of future emergence of local and global MBDs.


Assuntos
Arbovírus , Culicidae , Animais , Humanos , África do Norte , Gado , Mamíferos
20.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939324

RESUMO

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Sifonápteros/microbiologia , Peste/microbiologia , Proventrículo , Microscopia , Insetos Vetores/microbiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA