Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 684: 115360, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865269

RESUMO

CONTEXT: Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE: To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS: Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS: Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION: In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Neoplasias da Mama/metabolismo , Proliferação de Células , Hipóxia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
2.
Dev Biol ; 486: 26-43, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35337795

RESUMO

The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Animais , Proliferação de Células , Neovascularização Fisiológica/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Cancer Cell Int ; 23(1): 206, 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718440

RESUMO

BACKGROUND: Lymphangiogenesis has been reported to play crucial roles in the metastasis of thyroid cancer (THCA), but despite the significant research on lymphangiogenesis in THCA, the precise regulatory mechanism remains unclear. METHODS: Public databases including the Cancer Genome Atlas (TCGA), TIMER, and UALCAN were used to analyze and visualize the expression of TET3 and AHR in THCA, and the correlation between these molecules were used by TIMER. Additionally, RT-PCR and Western Blot were performed to determine the mRNA and protein expression of related proteins. Plate colony formation, wound healing, cell cycle, apoptosis, angiogenesis and transwell assay were used to examine the ability of proliferation, movement, lymphangiogenesis, migration and invasion of THCA cells. RESULTS: Analysis of the TCGA database revealed higher expression levels of TET3 and AHR in tumor tissue compared to normal tissue in THCA. Additionally, a strong correlation was observed between TET3 and AHR. UALCAN database demonstrated that high expression of TET3 and AHR was associated with advanced THCA TNM stages in THCA patients. Furthermore, TET3 activation accelerated THCA cell proliferation by inducing G2/M phase arrest and suppressing apoptosis, while AHR inactivation reduced THCA cell proliferation by decreasing G2/M phase arrest and promoting apoptosis in vitro. Notably, both TET3 and AHR significantly enhanced THCA cell lymphangiogenesis, migration and invasion. Moreover, TET3 activation and AHR inactivation regulated HIF-1α/VEGF signaling pathway, which ultimately, blocked the HIF-1α/VEGF in THCA cells and impaired their movement, migration and invasion abilities. CONCLUSIONS: The combined action of TET3 and AHR to promote lymphangiogenesis in THCA through the HIF-1α/VEGF signaling pathway, and targeting them might provide a potential treatment strategy for THCA.

4.
FASEB J ; 36(2): e22126, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044682

RESUMO

Vascular endothelial growth factor (VEGF) signaling is crucial for a large variety of cellular processes, not only related to angiogenesis but also in nonvascular cell types. We have previously shown that controlling angiogenesis by reducing VEGF-A signaling positively affects tendon healing. We now hypothesize that VEGF signaling in non-endothelial cells may contribute to tendon pathologies. By immunohistochemistry we show that VEGFR1, VEGFR2, and VEGFR3 are expressed in murine and human tendon cells in vivo. In a rat Achilles tendon defect model we show that VEGFR1, VEGFR3, and VEGF-D expression are increased after injury. On cultured rat tendon cells we show that VEGF-D stimulates cell proliferation in a dose-dependent manner; the specific VEGFR3 inhibitor SAR131675 reduces cell proliferation and cell migration. Furthermore, activation of VEGFR2 and -3 in tendon-derived cells affects the expression of mRNAs encoding extracellular matrix and matrix remodeling proteins. Using explant model systems, we provide evidence, that VEGFR3 inhibition prevents biomechanical deterioration in rat tail tendon fascicles cultured without load and attenuates matrix damage if exposed to dynamic overload in a bioreactor system. Together, these results suggest a strong role of tendon cell VEGF signaling in mediation of degenerative processes. These findings give novel insight into tendon cell biology and may pave the way for novel treatment options for degenerative tendon diseases.


Assuntos
Tendão do Calcâneo/metabolismo , Transdução de Sinais/fisiologia , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neovascularização Patológica/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
BMC Pregnancy Childbirth ; 23(1): 131, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859279

RESUMO

BACKGROUND: Preeclampsia (PE) is a complication of pregnancy that causes long-term adverse outcomes for the mother and fetus and may even lead to death. Oxidative stress caused by the imbalance of oxidants and antioxidants in the placenta has been considered as one of the key mechanisms of preeclampsia (together with inflammation, etc.), in which the placental mitochondria play an important role. The expression of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) is known to be increased in patients with PE. Mitochondrial ferritin (FtMt) is known to protect the mitochondria from oxidative stress, although its specific role in PE remains unclear. METHODS: We used qRT-PCR and western blotting to detect the expression levels of FtMt, HIF-1α, and VEGF in placental tissues from patients with PE. Human chorionic trophoblast cells were also administered with hypoxia treatment, followed by the detection of cell proliferation, invasion and angiogenic capacity by CCK8, Transwell, and endothelial cell angiogenesis assays; we also detected the expression of HIF-1α and VEGF in these cells. Finally, overexpression or inhibitory FtMt lentiviral vectors, along with negative control vectors, were constructed and transfected into hypoxia-treated human chorionic trophoblast cells; this was followed by analyses of cell function. RESULTS: The expression levels of FtMt, HIF-1α and VEGF in the PE group were higher than those in the control group (P < 0.05). Following hypoxia, there was an increase in the expression levels of HIF-1α and VEGF protein in trophoblast cells. There was also an increase in invasion ability and vascular formation ability along with a reduction in cell proliferation ability. These effects were reversed by transfecting cells with the knockout FtMt lentivirus vector. The differences were statistically significant. CONCLUSION: Analyses showed that FtMt plays a key role in the vascular regulation of PE trophoblast cells after hypoxia possibly acting via the HIF-1α/VEGF signaling pathway. These results provide us an enhanced understanding of the pathogenesis of PE and suggest that the HIF-1α/VEGF signaling pathway represents a new target for the treatment of PE.


Assuntos
Ferritinas , Proteínas Mitocondriais , Estresse Oxidativo , Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , Placenta , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Mitocondriais/metabolismo , Ferritinas/metabolismo
6.
Biochem Genet ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38103125

RESUMO

Angiogenesis is the critical media for tumor growth and migration. Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP1) acts as an oncogene in colon carcinoma (CC), but the biological effects of TIMP1 on angiogenesis remain an open issue. This study sought to explore the exact function and mechanism of TIMP1 in the angiogenesis of CC. Bioinformatics methods were utilized to analyze the expression of TIMP1 and its upstream transcription factor FOS-like antigen 1 (FOSL1) in the tumor tissue of CC. Meanwhile, in CC cell lines, real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot were utilized to verify the expression of TIMP1 and FOSL1. Cell counting kit-8 and tube formation assays were utilized to analyze the proliferation and angiogenesis abilities of human umbilical vein endothelial cells (HUVECs). Western blot was used to detect the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out to explore the specific interaction between FOSL1 and TIMP1. The present study discovered that TIMP1 and FOSL1 were evidently up-regulated in CC tissue and cells. Meanwhile, TIMP1 was found to participate in regulating the signaling pathway of vascular endothelial growth factor (VEGF). Silenced TIMP1 conspicuously suppressed the proliferation and angiogenesis of HUVECs and reduced the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Moreover, FOSL1 could promote TIMP1 transcription by binding with its promoter and the inhibition of TIMP1 expression obviously reversed the promotion effects of FOSL1 overexpression on the proliferation and angiogenesis of HUVECs. FOSL1 activated VEGF pathway by up-regulating TIMP1 expression, thereby advancing CC angiogenesis. We provided theoretical basis that the FOSL1/TIMP1/VEGF pathway might be a novel option for anti-angiogenesis therapy of CC.

7.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834519

RESUMO

Impairment of vascular endothelial integrity is associated with various vascular diseases. Our previous studies demonstrated that andrographolide is critical to maintaining gastric vascular homeostasis, as well as to regulating pathological vascular remodeling. Potassium dehydroandrograpolide succinate (PDA), a derivative of andrographolide, has been clinically used for the therapeutic treatment of inflammatory diseases. This study aimed to determine whether PDA promotes endothelial barrier repair in pathological vascular remodeling. Partial ligation of the carotid artery in ApoE-/- mice was used to evaluate whether PDA can regulate pathological vascular remodeling. A flow cytometry assay, BRDU incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay and Matrigel-based tube formation assay were performed to determine whether PDA can regulate the proliferation and motility of HUVEC. A molecular docking simulation and CO-immunoprecipitation assay were performed to observe protein interactions. We observed that PDA induced pathological vascular remodeling characterized by enhanced neointima formation. PDA treatment significantly enhanced the proliferation and migration of vascular endothelial cells. Investigating the potential mechanisms and signaling pathways, we observed that PDA induced endothelial NRP1 expression and activated the VEGF signaling pathway. Knockdown of NRP1 using siRNA transfection attenuated PDA-induced VEGFR2 expression. The interaction between NRP1 and VEGFR2 caused VE-Cad-dependent endothelial barrier impairment, which was characterized by enhanced vascular inflammation. Our study demonstrated that PDA plays a critical role in promoting endothelial barrier repair in pathological vascular remodeling.


Assuntos
Células Endoteliais , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Simulação de Acoplamento Molecular , Potássio/metabolismo , Transdução de Sinais , Succinatos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neuropilina-1
8.
Dev Biol ; 472: 98-114, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484703

RESUMO

microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Musculoesquelético/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Fenótipo , Transdução de Sinais/genética , Strongylocentrotus purpuratus/metabolismo , Fatores de Transcrição/metabolismo
9.
Proteins ; 90(4): 919-935, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34773424

RESUMO

Detailed description of the mechanism of action of the therapeutic antibodies is essential for the functional characterization and future optimization of potential clinical agents. We recently developed KD035, a fully human antibody targeting vascular endothelial growth factor receptor 2 (VEGFR2). KD035 blocked VEGF-A, and VEGF-C-mediated VEGFR2 activation, as demonstrated by the in vitro binding and competition assays and functional cellular assays. Here, we report a computational model of the complex between the variable fragment of KD035 (KD035(Fv)) and the domains 2 and 3 of the extracellular portion of VEGFR2 (VEGFR2(D2-3)). Our modeling was guided by a priori experimental information including the X-ray structures of KD035 and related antibodies, binding assays, target domain mapping and comparison of KD035 affinity for VEGFR2 from different species. The accuracy of the model was assessed by molecular dynamics simulations, and subsequently validated by mutagenesis and binding analysis. Importantly, the steps followed during the generation of this model can set a precedent for future in silico efforts aimed at the accurate description of the antibody-antigen and more broadly protein-protein complexes.


Assuntos
Anticorpos , Fator A de Crescimento do Endotélio Vascular , Humanos , Simulação de Dinâmica Molecular , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Funct Integr Genomics ; 22(1): 65-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839401

RESUMO

Air-breathing has evolved independently serval times with a variety of air-breathing organs (ABOs) in fish. The physiology of the air-breathing in bimodal respiration fish has been well understood, while studies on molecular mechanisms of the character are very limited. In the present study, we first determined the gill indexes of 110 fish species including 25 and 85 kinds of bimodal respiration fishes and non-air-breathing fishes, respectively. Then combined with histological observations of gills and ABOs/non-ABOs in three bimodal respiration fishes and two non-air breathing fishes, we found that the bimodal respiration fish was always of a degeneration gill and a well-vascularized ABO. Meanwhile, a comparative transcriptome analysis of posterior intestines, namely a well vascularized ABO in Misgurnus anguillicaudatus and a non-ABO in Leptobotia elongata, was performed to expound molecular variations of the air-breathing character. A total of 5,003 orthologous genes were identified. Among them, 1,189 orthologous genes were differentially expressed, which were enriched in 14 KEGG pathways. More specially, the expressions of hemoglobin genes and various HIF/VEGF signaling pathway genes were obviously upregulated in the ABO of M. anguillicaudatus. Moreover, we found that HIF-1α, VEGFAa, and MAP2K1 were co-expressed dramatically higher in ABOs of bimodal respiration fishes than those of non-ABOs of non-air-breathing fishes. These results indicated that the HIF/VEGF pathway played an important role in ABO angiogenesis/formation to promote fish to do aerial respiration. This study will contribute to our understanding of molecular mechanisms of air-breathing in fish.


Assuntos
Cipriniformes , Fator 1 Induzível por Hipóxia , Neovascularização Fisiológica , Respiração , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Cipriniformes/genética , Cipriniformes/fisiologia , Fator 1 Induzível por Hipóxia/genética , Respiração/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
11.
Mol Med ; 28(1): 58, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596156

RESUMO

BACKGROUND: Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. METHODS: The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. RESULTS: Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-ß, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. CONCLUSIONS: This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Glycyrrhiza , Isoflavonas , Fenóis , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Ferroptose/efeitos dos fármacos , Glycyrrhiza/metabolismo , Isoflavonas/farmacologia , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Microvasc Res ; 141: 104311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999110

RESUMO

OBJECTIVES: In the United States, over 8.5 million people suffer from peripheral arterial disease (PAD). Previously we reported that Pellino-1(Peli1) gene therapy reduces ischemic damage in the myocardium and skin flaps in Flk-1 [Fetal Liver kinase receptor-1 (Flk-1)/ Vascular endothelial growth factor receptor-2/VEGFR2] heterozygous (Flk-1+/--) mice. The present study compares the angiogenic response and perfusion efficiency following hind limb ischemia (HLI) in, Flk-1+/- and, MAPKAPKINASE2 (MK2-/-) knockout (KO) mice to their control wild type (WT). We also demonstrated the use of Peli1 gene therapy to improve loss of function following HLI. STUDY DESIGN AND METHODS: Femoral artery ligation (HLI) was performed in both Flk-1+/- and MK2-/- mice along with their corresponding WT. Another set of Flk-1+/- and MK2-/- were injected with either Adeno-LacZ (Ad.LacZ) or Adeno-Peli1 (Ad.Peli1) after HLI. Hind limb perfusion was assessed by laser doppler imaging at specific time points. A standardized scoring scale is used to quantify the extent of ischemia. Histology analysis performed includes capillary density, fibrosis, pro-angiogenic and anti-apoptotic proteins. RESULTS: Flk-1+/- and MK2-/- had a slower recovery of perfusion efficiency in the ischemic limbs than controls. Both Flk-1+/- and MK2-/- KO mice showed decreased capillary density and capillary myocyte ratios with increased fibrosis than their corresponding wild types. Ad.Peli1 injected ischemic Flk-1+/- limb showed improved perfusion, increased capillary density, and pro-angiogenic molecules with reduced fibrosis compared to Ad.LacZ group. No significant improvement in perfusion was observed in MK2-/- ischemic limb after Ad. Peli1 injection. CONCLUSION: Deletion of Flk-1 and MK2 impairs neovascularization and perfusion following HLI. Treatment with Ad. Peli1 results in increased angiogenesis and improved perfusion in Flk-1+/- mice but fails to rectify perfusion in MK2 KO mice. Overall, Peli1 gene therapy is a promising candidate for the treatment of PAD.


Assuntos
Doença Arterial Periférica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Modelos Animais de Doenças , Fibrose , Terapia Genética/métodos , Membro Posterior/irrigação sanguínea , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Isquemia/genética , Isquemia/patologia , Isquemia/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Proteínas Nucleares/genética , Perfusão , Doença Arterial Periférica/genética , Doença Arterial Periférica/terapia , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Circ J ; 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476830

RESUMO

BACKGROUND: Hypertension is a frequent adverse event caused by vascular endothelial growth factor signaling pathway (VSP) inhibitors. However, the impact of hypertension on clinical outcomes during VSP inhibitor therapy remains controversial.Methods and Results: We reviewed 3,460 cancer patients treated with VSP inhibitors from the LIFE Study database, comprising Japanese claims data between 2016 and 2020. Patients were stratified into 3 groups based on the timing of hypertension onset: (1) new-onset hypertension (n=569; hypertension developing after VSP inhibitor administration); (2) pre-existing hypertension (n=1,790); and (3) no hypertension (n=1,101). Time to treatment failure (TTF) was used as the primary endpoint as a surrogate for clinical outcomes. The median (interquartile range) TTF in the new-onset and pre-existing hypertension groups was 301 (133-567) and 170 (72-358) days, respectively, compared with 146 (70-309) days in the non-hypertensive group (P<0.001 among all groups). In an adjusted Cox proportional hazard model, new-onset (hazard ratio [HR] 0.58; 95% confidence interval [CI] 0.50-0.68; P<0.001) and pre-existing (HR 0.85; 95% CI 0.73-0.98; P=0.026) hypertension were independent factors for prolonged TTF. The TTF of new-onset hypertension was longer than that of pre-existing hypertension (HR 0.68; 95% CI 0.62-0.76; P<0.001). CONCLUSIONS: This study highlighted that new-onset hypertension induced by VSP inhibitors was an independent factor for favorable clinical outcomes. Pre-existing hypertension before VSP inhibitor initiation was also a significant factor.

14.
Future Oncol ; 18(5): 579-596, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037470

RESUMO

Aim: PYGL has been reported to have carcinogenic effects in a variety of tumors. This study is the first to reveal the relationship between PYGL and the prognosis of glioma. Materials & methods: Analyzing the Chinese Glioma Genome Atlas database, the authors revealed the expression status and prognostic value of PYGL in gliomas and used quantitative real-time PCR to verify PYGL expression again. Subsequently, they used Gene Set Enrichment Analysis to explore the biological pathways that PYGL may participate in. The authors also used the tumor immune estimation resource database to explore the relationship between PYGL and tumor immune cells. Results: PYGL is involved in the malignant progression of glioma. Conclusions: PYGL can be used as a new biomarker and molecular target for evaluating the prognosis and immunotherapy of glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioma/genética , Glicogênio Fosforilase Hepática/genética , Neoplasias Encefálicas/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glicogênio Fosforilase Hepática/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Prognóstico , Receptores Notch/metabolismo , Transdução de Sinais , Análise de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Exp Cell Res ; 399(2): 112436, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358860

RESUMO

Insulin mimetics, including zinc containing compounds, have previously been shown to influence chondrogenesis as it relates to healing of fractures in various preclinical models. However, the mechanism by which these compounds drive chondrogenic differentiation is yet undefined. Here, via next-generation sequencing (NGS) and in vitro functional validation, we show that Zinc Chloride (ZnCl2) induces expression of both chondrogenic genes (Sox9, Runx1, collagen) as well as genes associated with VEGF-mediated signal transduction, including VEGF receptors 1 and 2 and their ligands; VEGF-A and VEGF-B. Noticeably, although insulin was able to also induce expression of these pro-angiogenic and pro-chondrogenic genes, the impact of insulin on expression of VEGF receptor and ligand genes was marginal when compared to that of ZnCl2. Furthermore, while the VEGFR antagonist, Axitinib, was able to attenuate the pro-chondrogenic effects of both insulin and ZnCl2; a reduction in gene and protein expression was most profoundly observed when the antagonist was applied to cells treated with ZnCl2. Taken together, these data suggest an important role for the VEGF-mediated signal transduction pathways in the positive effects observed when applying zinc-based compounds as adjuvants for chondrogenesis-mediated fracture healing. In this regard, further mechanistic evaluation of ZnCl2 and other zinc-containing insulin mimetics may support rational design of therapies targeted for disease indications associated with impaired fracture healing.


Assuntos
Cloretos/farmacologia , Condrogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Compostos de Zinco/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
16.
Proc Natl Acad Sci U S A ; 116(25): 12353-12362, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152134

RESUMO

Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.


Assuntos
Biomineralização , Ouriços-do-Mar/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Cálcio/metabolismo , Redes Reguladoras de Genes , Humanos , Neovascularização Fisiológica , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ouriços-do-Mar/classificação , Ouriços-do-Mar/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Angiogenesis ; 24(3): 695-714, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33983539

RESUMO

Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Proteólise , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/genética
18.
Biochem Biophys Res Commun ; 553: 58-64, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756346

RESUMO

Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-ß signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.


Assuntos
Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Sistema de Sinalização das MAP Quinases , Mesoderma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad5/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
19.
Biomed Eng Online ; 20(1): 65, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193168

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes. Celastrol plays a certain role in the improvement of various diabetes complications. Therefore, this study aimed to explore whether celastrol inhibited the proliferation and angiogenesis of high glucose (HG)-induced human retinal endothelial cells (hRECs) by down-regulating the HIF1/VEGF signaling pathway. METHODS: The viability and proliferation of hRECs treated with glucose, celastrol or dimethyloxallyl glycine (DMOG) were analyzed by MTT assay. The invasion and tube formation ability of hRECs treated with glucose, celastrol or DMOG were in turn detected by transwell assay and tube formation assay. The expression of HIF1α and VEGF in hRECs after indicated treatment was analyzed by Western blot analysis and RT-qPCR analysis and ICAM-1 expression in hRECs after indicated treatment was detected by immunofluorescence assay RESULTS: HG induction promoted the proliferation, invasion and tube formation ability and increased the expression of HIF-1α and VEGF of hRECs, which were gradually suppressed by celastrol changing from 0.5 to 2.0 µM. DMOG was regarded as a HIF1α agonist, which attenuated the effect of celastrol on HG-induced hRECs. CONCLUSION: Celastrol inhibited the proliferation and angiogenesis of HG-induced hRECs by down-regulating the HIF1α/VEGF signaling pathway.


Assuntos
Células Endoteliais , Glucose , Proliferação de Células , Humanos , Triterpenos Pentacíclicos
20.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240596

RESUMO

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Assuntos
Indutores da Angiogênese/administração & dosagem , Sistemas de Liberação de Medicamentos , Proteína Forkhead Box M1/administração & dosagem , Fatores de Transcrição Forkhead/administração & dosagem , Hiperóxia/tratamento farmacológico , Nanopartículas , Alvéolos Pulmonares/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/uso terapêutico , Animais , Animais Recém-Nascidos , Western Blotting , Feminino , Citometria de Fluxo , Proteína Forkhead Box M1/farmacologia , Proteína Forkhead Box M1/uso terapêutico , Fatores de Transcrição Forkhead/farmacologia , Fatores de Transcrição Forkhead/uso terapêutico , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA