Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 171, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350872

RESUMO

BACKGROUND: The highly eusocial stingless bees are crucial pollinators of native and agricultural ecosystems. Nevertheless, genomic studies within this bee tribe remain scarce. We present the genome assembly of the stingless bee Melipona bicolor. This bee is a remarkable exception to the typical single-queen colony structure, since in this species, multiple queens may coexist and share reproductive duties, resulting in genetically diverse colonies with weak kinship connections. As the only known genuinely polygynous bee, M. bicolor's genome provides a valuable resource for investigating sociality beyond kin selection. RESULTS: The genome was assembled employing a hybrid approach combining short and long reads, resulting in 241 contigs spanning 259 Mb (N50 of 6.2 Mb and 97.5% complete BUSCOs). Comparative analyses shed light on some evolutionary aspects of stingless bee genomics, including multiple chromosomal rearrangements in Melipona. Additionally, we explored the evolution of venom genes in M. bicolor and other stingless bees, revealing that, apart from two genes, the conserved repertoire of venom components remains under purifying selection in this clade. CONCLUSION: This study advances our understanding of stingless bee genomics, contributing to the conservation efforts of these vital pollinators and offering insights into the evolutionary mechanisms driving their unique adaptations.


Assuntos
Ecossistema , Comportamento Social , Abelhas/genética , Animais , Reprodução , Cromossomos/genética
2.
Toxins (Basel) ; 11(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600994

RESUMO

Snake venoms are complex mixtures of toxic proteins encoded by various gene families that function synergistically to incapacitate prey. A huge repertoire of snake venom genes and proteins have been reported, and alternative splicing is suggested to be involved in the production of divergent gene transcripts. However, a genome-wide survey of the transcript repertoire and the extent of alternative splicing still remains to be determined. In this study, the comprehensive analysis of transcriptomes in the venom gland was achieved by using PacBio sequencing. Extensive alternative splicing was observed in three venom protein gene families, metalloproteinase (MP), serine protease (SP), and vascular endothelial growth factors (VEGF). Eleven MP and SP genes and a VEGF gene are expressed as a total of 81, 61, and 8 transcript variants, respectively. In the MP gene family, individual genes are transcribed into different classes of MPs by alternative splicing. We also observed trans-splicing among the clustered SP genes. No other venom genes as well as non-venom counterpart genes exhibited alternative splicing. Our results thus indicate a potential contribution of mRNA alternative and trans-splicing in the production of highly variable transcripts of venom genes in the habu snake.


Assuntos
Venenos de Crotalídeos/genética , Metaloproteases/genética , RNA Mensageiro/genética , Proteínas de Répteis/genética , Serina Proteases/genética , Trimeresurus , Fatores de Crescimento do Endotélio Vascular/genética , Processamento Alternativo , Animais , Feminino , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA