RESUMO
Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.
Assuntos
Segmento Inicial do Axônio , Neocórtex , Humanos , Camundongos , Animais , Corpo Celular , Neurônios/fisiologia , Células Piramidais/metabolismo , Axônios/fisiologia , Sinapses/fisiologiaRESUMO
Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.
Assuntos
Cálcio , Receptores de AMPA , Animais , Receptores de AMPA/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico , Mamíferos/metabolismoRESUMO
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.
Assuntos
Neurônios GABAérgicos/metabolismo , Glicina/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Animais , Células do Corno Anterior/metabolismo , Astrócitos/metabolismo , Axônios/metabolismo , Biomarcadores , Gânglios Espinais/metabolismo , Camundongos , Medula Espinal/citologia , Sinapses/metabolismoRESUMO
Recent studies have shown that ethanol produces a widespread modulation of neuronal activity in the central nervous system. It is not fully understood, however, how ethanol changes nociceptive transmission. We investigated acute effects of ethanol on synaptic transmission in the substantia gelatinosa (lamina II of the spinal dorsal horn) and mechanical responses in the spinal dorsal horn. In substantia gelatinosa neurons, bath application of ethanol at low concentration (10 mM) did not change the frequency and amplitude of spontaneous inhibitory postsynaptic currents. At medium to high concentrations (20-100 mM), however, ethanol elicited a barrage of large amplitude spontaneous inhibitory postsynaptic currents. In the presence of tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic currents was not detected. In addition, ethanol (20-100 mM) increased the frequency of spontaneous discharge of vesicular GABA transporter-Venus-labeled neurons and suppressed the mechanical nociceptive response in wide-dynamic range neurons in the spinal dorsal horn. The present results suggest that ethanol may reduce nociceptive information transfer in the spinal dorsal horn by enhancement of inhibitory GABAergic and glycinergic synaptic transmission.
Assuntos
Etanol/efeitos adversos , Inibição Neural/efeitos dos fármacos , Substância Gelatinosa/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nociceptividade/efeitos dos fármacos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacosRESUMO
Background Chronic pain is a persistent unpleasant sensation that produces pathological synaptic plasticity in the central nervous system. Both human imaging study and animal studies consistently demonstrate that the anterior cingulate cortex is a critical cortical area for nociceptive and chronic pain processing. Thus far, the mechanisms of excitatory synaptic transmission and plasticity have been well characterized in the anterior cingulate cortex for various models of chronic pain. By contrast, the potential contribution of inhibitory synaptic transmission in the anterior cingulate cortex, in models of chronic pain, is not fully understood. Methods Chronic inflammation was induced by complete Freund adjuvant into the adult mice left hindpaw. We performed in vitro whole-cell patch-clamp recordings from layer II/III pyramidal neurons in two to three days after the complete Freund adjuvant injection and examined if the model could cause plastic changes, including transient and tonic type A γ-aminobutyric acid (GABAA) receptor-mediated inhibitory synaptic transmission, in the anterior cingulate cortex. We analyzed miniature/spontaneous inhibitory postsynaptic currents, GABAA receptor-mediated tonic currents, and evoked inhibitory postsynaptic currents. Finally, we studied if GABAergic transmission-related proteins in the presynapse and postsynapse of the anterior cingulate cortex were altered. Results The complete Freund adjuvant model reduced the frequency of both miniature and spontaneous inhibitory postsynaptic currents compared with control group. By contrast, the average amplitude of these currents was not changed between two groups. Additionally, the complete Freund adjuvant model did not change GABAA receptor-mediated tonic currents nor the set of evoked inhibitory postsynaptic currents when compared with control group. Importantly, protein expression of vesicular GABA transporter was reduced within the presynpase of the anterior cingulate cortex in complete Freund adjuvant model. In contrast, the complete Freund adjuvant model did not change the protein levels of GABAA receptors subunits such as α1, α5, ß2, γ2, and δ. Conclusion Our results suggest that the induction phase of inflammatory pain involves spontaneous GABAergic plasticity at presynaptic terminals of the anterior cingulate cortex.
Assuntos
Dor Crônica/complicações , Dor Crônica/patologia , Giro do Cíngulo/patologia , Inflamação/etiologia , Plasticidade Neuronal/fisiologia , Limiar da Dor/fisiologia , Ácido gama-Aminobutírico/metabolismo , Anestésicos Locais/farmacologia , Anestésicos Locais/uso terapêutico , Animais , Bicuculina/análogos & derivados , Bicuculina/farmacologia , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Adjuvante de Freund/toxicidade , Antagonistas de Receptores de GABA-A/farmacologia , Giro do Cíngulo/citologia , Técnicas In Vitro , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Estimulação Física/efeitos adversos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia , Tetrodotoxina/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismoRESUMO
The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5-14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line-derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5-14 days post-insult, but recovered at 4-5 weeks post-insult.
Assuntos
Nervo Facial/metabolismo , Neurônios GABAérgicos/metabolismo , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Axotomia , Glutamato Descarboxilase/metabolismo , Neurônios Motores/metabolismo , Ratos , Fatores de TempoRESUMO
Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.
Assuntos
Gânglios da Base/metabolismo , Guanilato Ciclase/química , Neurônios/metabolismo , Óxido Nítrico/química , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/química , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Eletrofisiologia , Retroalimentação Fisiológica , Feminino , Proteínas de Fluorescência Verde/metabolismo , Levodopa/química , Masculino , Camundongos , Plasticidade Neuronal , Oxidopamina/química , Transdução de Sinais , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismoRESUMO
Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear. Here, we selectively eliminated the directional tuning of inhibitory inputs onto DSGCs by disrupting GABA release from the presynaptic interneuron starburst amacrine cell in the mouse retina. We found that, even without directionally tuned inhibition, direction selectivity can still be implemented in a subset of On-Off DSGCs by direction-selective excitation and a temporal offset between excitation and isotropic inhibition. Our results therefore demonstrate the concerted action of multiple synaptic mechanisms for robust direction selectivity in the retina. Significance statement: The direction-selective circuit in the retina has been a classic model to study neural computations by the brain. An important but unresolved question is how direction selectivity is implemented by directionally tuned excitatory and inhibitory mechanisms. Here we specifically removed the direction tuning of inhibition from the circuit. We found that direction tuning of inhibition is important but not indispensable for direction selectivity of DSGCs' spiking activity, and that the residual direction selectivity is implemented by direction-selective excitation and temporal offset between excitation and inhibition. Our results highlight the concerted actions of synaptic excitation and inhibition required for robust direction selectivity in the retina and provide critical insights into how patterned excitation and inhibition collectively implement sensory processing.
Assuntos
Células Amácrinas/fisiologia , Orientação/fisiologia , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Células Amácrinas/citologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Dendritos/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Retina/citologia , Estatísticas não Paramétricas , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/farmacologiaRESUMO
BACKGROUND: GABAergic synaptic transmission is known to play a critical role in the assembly of neuronal circuits during development and is responsible for maintaining the balance between excitatory and inhibitory signaling in the brain during maturation into adulthood. Importantly, defects in GABAergic neuronal function and signaling have been linked to a number of neurological diseases, including autism spectrum disorders, schizophrenia, and epilepsy. With patient-specific induced pluripotent stem cell (iPSC)-based models of neurological disease, it is now possible to investigate the disease mechanisms that underlie deficits in GABAergic function in affected human neurons. To that end, tools that enable the labeling and purification of viable GABAergic neurons from human pluripotent stem cells would be of great value. RESULTS: To address the need for tools that facilitate the identification and isolation of viable GABAergic neurons from the in vitro differentiation of iPSC lines, a cell type-specific promoter-driven fluorescent reporter construct was developed that utilizes the human vesicular GABA transporter (hVGAT) promoter to drive the expression of mCherry specifically in VGAT-expressing neurons. The transduction of iPSC-derived forebrain neuronal cultures with the hVGAT promoter-mCherry lentiviral reporter construct specifically labeled GABAergic neurons. Immunocytochemical analysis of hVGAT-mCherry expression cells showed significant co-labeling with the GABAergic neuronal markers for endogenous VGAT, GABA, and GAD67. Expression of mCherry from the VGAT promoter showed expression in several cortical interneuron subtypes to similar levels. In addition, an effective and reproducible protocol was developed to facilitate the fluorescent activated cell sorting (FACS)-mediated purification of high yields of viable VGAT-positive cells. CONCLUSIONS: These studies demonstrate the utility of the hVGAT-mCherry reporter construct as an effective tool for studying GABAergic neurons differentiated in vitro from human pluripotent stem cells. This approach could provide a means of obtaining large quantities of viable GABAergic neurons derived from disease-specific hiPSCs that could be used for functional assays or high-throughput screening of small molecule libraries.
Assuntos
Neurônios GABAérgicos/metabolismo , Proteínas Luminescentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Calbindina 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Humanos , Proteínas Luminescentes/genética , Mutação/genética , Fator de Crescimento Neural/farmacologia , Parvalbuminas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Prosencéfalo/citologia , Somatostatina/metabolismo , Sinapsinas/metabolismo , Transfecção , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteína Vermelha FluorescenteRESUMO
Spider sensory neurons with cell bodies close to various sensory organs are innervated by putative efferent axons from the central nervous system (CNS). Light and electronmicroscopic imaging of immunolabeled neurons has demonstrated that neurotransmitters present at peripheral synapses include γ-aminobutyric acid (GABA), glutamate and octopamine. Moreover, electrophysiological studies show that these neurotransmitters modulate the sensitivity of peripheral sensory neurons. Here, we undertook immunocytochemical investigations to characterize GABA and glutamate-immunoreactive neurons in three-dimensional reconstructions of the spider CNS. We document that both neurotransmitters are abundant in morphologically distinct neurons throughout the CNS. Labeling for the vesicular transporters, VGAT for GABA and VGLUT for glutamate, showed corresponding patterns, supporting the specificity of antibody binding. Whereas some neurons displayed strong immunolabeling, others were only weakly labeled. Double labeling showed that a subpopulation of weakly labeled neurons present in all ganglia expresses both GABA and glutamate. Double labeled, strongly and weakly labeled GABA and glutamate immunoreactive axons were also observed in the periphery along muscle fibers and peripheral sensory neurons. Electron microscopic investigations showed presynaptic profiles of various diameters with mixed vesicle populations innervating muscle tissue as well as sensory neurons. Our findings provide evidence that: (1) sensory neurons and muscle fibers are innervated by morphologically distinct, centrally located GABA- and glutamate immunoreactive neurons; (2) a subpopulation of these neurons may co-release both neurotransmitters; and (3) sensory neurons and muscles are innervated by all of these neurochemically and morphologically distinct types of neurons. The biochemical diversity of presynaptic innervation may contribute to how spiders filter natural stimuli and coordinate appropriate response patterns.
Assuntos
Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Aranhas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Esôfago/metabolismo , Feminino , Imunofluorescência , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Gânglios dos Invertebrados/metabolismo , Imageamento Tridimensional , Músculos/metabolismo , Músculos/ultraestrutura , Aranhas/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestruturaRESUMO
Synaptic vesicles specific to inhibitory GABA-releasing neurons are critical for regulating neuronal excitability. To study the specific molecular composition, architecture, and function of inhibitory synaptic vesicles, we have developed a new method to isolate and purify GABA synaptic vesicles from mouse brains. GABA synaptic vesicles were immunoisolated from mouse brain tissue using an engineered fragment antigen-binding region (Fab) against the vesicular GABA transporter (vGAT) and purified. Western blot analysis confirmed that the GABA synaptic vesicles were specifically enriched for vGAT and largely depleted of contaminants from other synaptic vesicle types, such as vesicular glutamate transporter (vGLUT1), and other cellular organelles. This degree of purity was achieved despite the relatively low abundance of vGAT vesicles compared to the total synaptic vesicle pool in mammalian brains. Cryo-electron microscopy images of these isolated GABA synaptic vesicles revealed intact morphology with circular shape and protruding proteinaceous densities. The GABA synaptic vesicles are functional, as assessed by a hybrid (ex vivo/in vitro) vesicle fusion assay, and they undergo synchronized fusion with synthetic plasma membrane mimic vesicles in response to Ca2+-triggering, but, as a negative control, not to Mg2+-triggering. Our immunoisolation method could also be applied to other types of vesicles.
RESUMO
Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes ß-alanine as a substrate. Proteoliposomes containing purified VGAT transport ß-alanine using Δψ but not ΔpH as a driving force. The Δψ-driven ß-alanine uptake requires Cl(-). VGAT also facilitates Cl(-) uptake in the presence of ß-alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates ß-alanine uptake. These findings indicated that VGAT transports ß-alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular ß-alanine transporter. Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In the present study, we showed that proteoliposomes containing purified VGAT transport ß-alanine using Δψ as a driving force. VGAT also facilitates Cl(-) uptake. Our findings indicated that VGAT functions as a vesicular ß-alanine transporter.
Assuntos
Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/química , beta-Alanina/química , Transporte Biológico , Lipossomos/química , Mutação , Proteolipídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genéticaRESUMO
The thalamic reticular nucleus (TRN) is a thin sheet of GABAergic neurons surrounding the thalamus, and it regulates the activity of thalamic relay neurons. The TRN has been reported to be involved in sensory gating, attentional regulation, and some other functions. However, little is known about the contribution of the TRN to sequence learning. In the present study, we examined whether the TRN is involved in reward-based learning of action sequence with no eliciting stimuli (operant conditioning), by analyzing the performance of male and female Avp-Vgat-/- mice (Vgatflox/flox mice crossed to an Avp-Cre driver line) on tasks conducted in an operant box having three levers. Our histological and electrophysiological data demonstrated that in adult Avp-Vgat-/- mice, vesicular GABA transporter (VGAT) was absent in most TRN neurons and the GABAergic transmission from the TRN to the thalamus was largely suppressed. The performance on a task in which mice needed to press an active lever for food reward showed that simple operant learning of lever pressing and learning of win-stay and lose-shift strategies are not affected in Avp-Vgat-/- mice. In contrast, the performance on a task in which mice needed to press three levers in a correct order for food reward showed that learning of the order of lever pressing (action sequence learning) was impaired in Avp-Vgat-/- mice. These results suggest that the TRN plays an important role in action sequence learning.
Assuntos
Núcleos Talâmicos , Tálamo , Camundongos , Masculino , Feminino , Animais , Núcleos Talâmicos/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Condicionamento OperanteRESUMO
Transmembrane protein (TMEM230) is located in secretory/recycling vesicles, including synaptic vesicles in neurons. However, the functional relationship between TMEM230 and epilepsy is still a mystery. The aims of this study were to investigate the expression of TMEM230 in patients with temporal lobe epilepsy (TLE) and two different mice models of chronic epilepsy, and to determine the probable roles of TMEM230 in epilepsy. Our results showed that TMEM230 expression was increased in the temporal neocortex of epileptic patients and the hippocampus and cortex of epileptic mice compared with that in the control tissues. Moreover, TMEM230 was mainly expressed in the neurons in both humans and mice epileptic brain. TMEM230 co-localized with glutamate vesicular transporter 1 (VGLUT-1), but not with vesicular GABA transporter (VGAT). Mechanistically, coimmunoprecipitation confirmed that TMEM230 interacted with VGLUT-1, but not with VGAT in the hippocampus of epileptic mice. Lentivirus mediated overexpression of TMEM230 increased mice susceptibility to epilepsy and behavioural phenotypes of epileptic seizures during the kainite (KA)-induced chronic phase of epileptic seizures and the pentylenetetrazole (PTZ) kindling process, whereas lentivirus-mediated TMEM230 downregulation had the opposite effect. These results shed light on the functions of TMEM230 in neurons, suggesting that TMEM230 may play a critical role in the regulation of epileptic activity via influencing excitatory neurotransmission.
RESUMO
BACKGROUND: Cognitive deficits in schizophrenia are associated with altered GABA (gamma-aminobutyric acid) neurotransmission in the prefrontal cortex (PFC). GABA neurotransmission requires GABA synthesis by 2 isoforms of glutamic acid decarboxylase (GAD65 and GAD67) and packaging by the vesicular GABA transporter (vGAT). Current postmortem findings suggest that GAD67 messenger RNA is lower in a subset of the calbindin-expressing (CB+) class of GABA neurons in schizophrenia. Hence, we assessed if CB+ GABA neuron boutons are affected in schizophrenia. METHODS: For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, PFC tissue sections were immunolabeled for vGAT, CB, GAD67, and GAD65. The density of CB+ GABA boutons and levels of the 4 proteins per bouton were quantified. RESULTS: Some CB+ GABA boutons contained both GAD65 and GAD67 (GAD65+/GAD67+), whereas others contained only GAD65 (GAD65+) or GAD67 (GAD67+). In schizophrenia, vGAT+/CB+/GAD65+/GAD67+ bouton density was not altered, vGAT+/CB+/GAD65+ bouton density was 86% higher in layers 2/superficial 3 (L2/3s), and vGAT+/CB+/GAD67+ bouton density was 36% lower in L5-6. Bouton GAD levels were differentially altered across bouton types and layers. In schizophrenia, the sum of GAD65 and GAD67 levels in vGAT+/CB+/GAD65+/GAD67+ boutons was 36% lower in L6, GAD65 levels were 51% higher in vGAT+/CB+/GAD65+ boutons in L2, and GAD67 levels in vGAT+/CB+/GAD67+ boutons were 30% to 46% lower in L2/3s-6. CONCLUSIONS: These findings indicate that schizophrenia-associated alterations in the strength of inhibition from CB+ GABA neurons in the PFC differ across cortical layers and bouton classes, suggesting complex contributions to PFC dysfunction and cognitive impairments in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Calbindinas/metabolismo , Córtex Pré-Frontal/metabolismo , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fnana.2023.1242839.].
RESUMO
The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
RESUMO
It has been previously shown that 40% of murine cortical interneurons are eliminated via apoptosis during the first two weeks of postnatal development [1], [2], [3]. Here, we report data on the effect of ethanol exposure on this process in a mouse model of binge-like alcohol exposure during last trimester of human pregnancy (equivalent to the first postnatal week in mice). We used transgenic mice that express the Venus fluorescent protein in GABAergic interneurons under the control of the vesicular GABA transporter promoter (VGAT-Venus mice) [4]. Mice were exposed to air (controls) or ethanol for 4 hr/day on postnatal days 4 to 9 using vapor inhalation chambers [5]. This exposure paradigm produces peak blood ethanol concentrations between 300 and 400 mg/dl. Transcardial perfusions were performed under anesthesia at postnatal days 5, 7, 10 and 30. Cryostat-prepared floating sections were stained with the fluorescent DNA dye, 4'6-diamidino-2-phenylindole (DAPI). We then quantified the density of Venus-positive GABAergic interneurons in layers I, II-IV and V of the retrosplenial cortex, which is part of the limbic memory system [6], and is sensitive to ethanol-induced apoptosis during the first postnatal week in mice [7], [8], [9], [10], [11]. The data show that density of interneurons decreases in the retrosplenial cortex layers during the first week of life and that ethanol exposure does not significantly alter this process. These data may be of interest to investigators who are studying the effect of ethanol and other teratogenic agents on developing interneurons in the cerebral cortex.
RESUMO
Thermoregulatory behavior is a basic motivated behavior for body temperature homeostasis. Despite its fundamental importance, a forebrain region or defined neural population required for this process has yet to be established. Here, we show that Vgat-expressing neurons in the lateral hypothalamus (LHVgat neurons) are required for diverse thermoregulatory behaviors. The population activity of LHVgat neurons is increased during thermoregulatory behavior and bidirectionally encodes thermal punishment and reward (P&R). Although this population also regulates feeding and caloric reward, inhibition of parabrachial inputs selectively impaired thermoregulatory behaviors and encoding of thermal stimulus by LHVgat neurons. Furthermore, two-photon calcium imaging revealed a subpopulation of LHVgat neurons bidirectionally encoding thermal P&R, which is engaged during thermoregulatory behavior, but is largely distinct from caloric reward-encoding LHVgat neurons. Our data establish LHVgat neurons as a required neural substrate for behavioral thermoregulation and point to the key role of the thermal P&R-encoding LHVgat subpopulation in thermoregulatory behavior.
Assuntos
Região Hipotalâmica Lateral , Prosencéfalo , Regulação da Temperatura Corporal , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , RecompensaRESUMO
Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.