Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.887
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 80(6): 1055-1066.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33188728

RESUMO

The causative virus of the COVID-19 pandemic, SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to suppress cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the cellular transcriptome. Our cryo-EM structure of the Nsp1-40S ribosome complex shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the structure of the 48S preinitiation complex formed by Nsp1, 40S, and the cricket paralysis virus internal ribosome entry site (IRES) RNA, which shows that it is nonfunctional because of the incorrect position of the mRNA 3' region. Our results elucidate the mechanism of host translation inhibition by SARS-CoV-2 and advance understanding of the impacts from a major pathogenicity factor of SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/virologia , SARS-CoV-2/genética , SARS-CoV-2/ultraestrutura , Células Vero , Proteínas não Estruturais Virais/genética
2.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649884

RESUMO

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Assuntos
Processamento Alternativo , Reparo do DNA , Epigênese Genética , Instabilidade Genômica , Histonas/fisiologia , Anáfase , Animais , Linhagem Celular , Instabilidade Cromossômica , Cromossomos Humanos X , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Immunity ; 48(3): 584-598.e5, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29548673

RESUMO

Live vaccines historically afford superior protection, yet the cellular and molecular mechanisms mediating protective immunity remain unclear. Here we found that vaccination of mice with live, but not dead, Gram-negative bacteria heightened follicular T helper cell (Tfh) differentiation, germinal center formation, and protective antibody production through the signaling adaptor TRIF. Complementing the dead vaccine with an innate signature of bacterial viability, bacterial RNA, recapitulated these responses. The interferon (IFN) and inflammasome pathways downstream of TRIF orchestrated Tfh responses extrinsically to B cells and classical dendritic cells. Instead, CX3CR1+CCR2- monocytes instructed Tfh differentiation through interleukin-1ß (IL-1ß), a tightly regulated cytokine secreted upon TRIF-dependent IFN licensing of the inflammasome. Hierarchical production of IFN-ß and IL-1ß dictated Tfh differentiation and elicited the augmented humoral responses characteristic of live vaccines. These findings identify bacterial RNA, an innate signature of microbial viability, as a trigger for Tfh differentiation and suggest new approaches toward vaccine formulations for coordinating augmented Tfh and B cell responses.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Viabilidade Microbiana/imunologia , RNA Bacteriano/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/metabolismo , Vacinas Bacterianas/imunologia , Biomarcadores , Diferenciação Celular/imunologia , Citocinas/metabolismo , Centro Germinativo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Imunidade Inata , Inflamassomos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
4.
Semin Cell Dev Biol ; 144: 55-66, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36117019

RESUMO

Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.


Assuntos
Organoides , Esferoides Celulares , Sobrevivência Celular , Morte Celular
5.
Plant J ; 119(2): 998-1013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761113

RESUMO

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Assuntos
Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Pólen/genética , Pólen/fisiologia , Pólen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação/fisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Mutação , Gotículas Lipídicas/metabolismo
6.
Circ Res ; 133(11): 902-923, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850368

RESUMO

BACKGROUND: 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS: We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS: For prodeath GsPCRs, we explored ß1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in ß1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. ß1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS: Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].


Assuntos
AMP Cíclico , Miócitos Cardíacos , Camundongos , Animais , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Peptídeos/metabolismo
7.
Methods ; 229: 108-114, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909975

RESUMO

Nearly seventy percent of diagnostic lab test errors occur due to variability in preanalytical factors. These are the parameters involved with all aspects of tissue processing, starting from the time tissue is collected from the patient in the operating room, until it is received and tested in the laboratory. While there are several protocols for transporting fixed tissue, organs, and liquid biopsies, such protocols are lacking for transport and handling of live solid tumor tissue specimens. There is a critical need to establish preanalytical protocols to reduce variability in biospecimen integrity and improve diagnostics for personalized medicine. Here, we provide a comprehensive protocol for the standard collection, handling, packaging, cold-chain logistics, and receipt of solid tumor tissue biospecimens to preserve tissue viability.

8.
Exp Cell Res ; 437(1): 113993, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485079

RESUMO

This article demonstrates that label-free single-cell video tracking is a useful approach for in vitro studies of Epithelial-Mesenchymal Transition (EMT). EMT is a highly heterogeneous process, involved in wound healing, embryogenesis and cancer. The process promotes metastasis, and increased understanding can aid development of novel therapeutic strategies. The role of EMT-associated biomarkers depends on biological context, making it challenging to compare and interpret data from different studies. We demonstrate single-cell video tracking for comprehensive phenotype analysis. In this study we performed single-cell video tracking on 72-h long recordings. We quantified several behaviours at a single-cell level during induced EMT in MDA-MB-468 cells. This revealed notable variations in migration speed, with different dose-response patterns and varying distributions of speed. By registering cell morphologies during the recording, we determined preferred paths of morphological transitions. We also found a clear association between migration speed and cell morphology. We found elevated rates of cell death, diminished proliferation, and an increase in mitotic failures followed by re-fusion of sister-cells. The method allows tracking of phenotypes in cell lineages, which can be particularly useful in epigenetic studies. Sister-cells were found to have significant similarities in their speeds and morphologies, illustrating the heritability of these traits.


Assuntos
Rastreamento de Células , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Fenótipo , Biomarcadores , Movimento Celular
9.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497111

RESUMO

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Assuntos
Ilhotas Pancreáticas , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Celular , Sobrevivência Celular
10.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769917

RESUMO

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Assuntos
Medula Renal , NF-kappa B , Transdução de Sinais , Animais , NF-kappa B/metabolismo , Camundongos , Medula Renal/metabolismo , Medula Renal/citologia , Pressão Osmótica , Aquaporina 2/metabolismo , Aquaporina 2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Regiões Promotoras Genéticas , Células Cultivadas , Regulação da Expressão Gênica , Simportadores/metabolismo , Simportadores/genética , Receptores Citoplasmáticos e Nucleares
11.
J Cell Physiol ; : e31367, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988031

RESUMO

Oxidative phosphorylation is becoming increasingly important in the induction and development of endometriosis. Recently, it has been reported that ring finger protein 43 (RNF43) is involved in the process of oxidative phosphorylation, but the mechanism remains unclear. Our investigation is to delve into the roles of RNF43 in endometriosis and elucidate the related mechanisms. We found RNF43 was downregulated in ectopic endometrial tissue and primary ectopic endometrial stromal cells (ECESCs). Knockdown of RNF43 enhanced cell viability and migration by activating oxidative phosphorylation in eutopic endometrial stromal cells (EUESCs), while overexpression of RNF43 led to the opposite results. Moreover, RNF43 reinforced the ubiquitination and degradation of NADH dehydrogenase Fe-S protein 1 (NDUFS1) by interacting with it. Likewise to RNF43 overexpression, NDUFS1 silencing inhibited cell viability, migration, and oxidative phosphorylation in ECESCs. NDUFS1 was a downstream target of RNF43, mediating its biological role in endometriosis. Interestingly, the expression and stability of RNF43 mRNA were regulated by the Methyltransferase-like 3 (METTL3)/IGF2BP2 m6A modification axis. The results of rat experiments showed decreased RNF43 expression and increased NDUFS1 expression in endometriosis rats, which was enhanced by METTL3 inhibition. Those observations indicated that m6A methylation-mediated RNF43 negatively affects viability and migration of endometrial stromal cells through regulating oxidative phosphorylation via NDUFS1. The discovery of METTL3/RNF43/NDUFS1 axis suggested promising therapeutic targets for endometriosis.

12.
Curr Issues Mol Biol ; 46(1): 788-807, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248353

RESUMO

Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.

13.
Am Nat ; 204(1): 73-95, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857346

RESUMO

AbstractDevelopmental plasticity allows organisms to increase the fit between their phenotype and their early-life environment. The extent to which such plasticity also enhances adult fitness is not well understood, however, particularly when early-life and adult environments differ substantially. Using a cross-factorial design that manipulated diet at two life stages, we examined predictions of major hypotheses-silver spoon, environmental matching, and thrifty phenotype-concerning the joint impacts of early-life and adult diets on adult morphology/display traits, survival, and reproductive allocation. Overall, results aligned with the silver spoon hypothesis, which makes several predictions based on the premise that development in poor-quality environments constrains adult performance. Males reared and bred on a low-protein diet had lower adult survivorship than other male treatment groups; females' survivorship was higher than males' and not impacted by early diet. Measures of allocation to reproduction primarily reflected breeding diet, but where natal diet impacted reproduction, results supported the silver spoon. Both sexes showed reduced expression of display traits when reared on a low-protein diet. Results accord with other studies in supporting the relevance of the silver spoon hypothesis to birds and point to significant ramifications of sex differences in early-life viability selection on the applicability/strength of silver spoon effects.


Assuntos
Tentilhões , Reprodução , Animais , Masculino , Feminino , Tentilhões/fisiologia , Longevidade , Dieta/veterinária , Fenótipo , Dieta com Restrição de Proteínas
14.
Am J Physiol Heart Circ Physiol ; 326(1): H103-H109, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947437

RESUMO

Cardiorespiratory fitness (CRF) and the subendocardial viability ratio (SEVR) decline with age and predict future cardiovascular disease (CVD) events in a sex-dependent manner. However, the relation between CRF and SEVR in apparently healthy males and females across the age span is largely unknown. We hypothesized higher CRF is associated with greater SEVR in older females but not in males. Two-hundred sixty-two (126 M/136 F, age range 20-84 yr) participants underwent measures of CRF (maximal O2 consumption, V̇o2max) and SEVR (pulse wave analysis, PWA). A two-way analysis of variance (ANOVA) was used to examine differences in baseline characteristics between younger (<45 yr) and middle-aged and older (MA/O, ≥45 yr) males and females. Bivariate correlations assessed the relation between CRF, SEVR, and age in males and females. Partial correlations adjusted for CVD risk factors and medications. MA/O females had the lowest CRF and SEVR compared with all other groups (P < 0.05, both). SEVR was negatively correlated with age (r = -0.29) and positively correlated with CRF (r = 0.53) in females (P < 0.05, both) that persisted after controlling for CVD risk factors and medications (P < 0.05, all). SEVR was correlated with CRF in males only after adjusting for CVD risk factors and medications (r = 0.26, P < 0.05). These findings collectively demonstrate higher CRF is associated with greater SEVR in males and females after adjusting for CVD risk factors and medications, therefore highlighting subtle sex-specific nuances that warrant further investigation.NEW & NOTEWORTHY Cardiorespiratory fitness (CRF) and the subendocardial viability ratio (SEVR) are independent predictors of mortality and decline with age. However, the sex-specific relationship between CRF and SEVR with aging in adult males and females is unknown. Our findings demonstrate higher CRF is associated with greater age-related SEVR in males and females, after adjusting for traditional cardiovascular disease (CVD) risk factors and medications. However, subtle sex-related nuances exist in the relationship between SEVR and CRF that require further investigation.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Humanos , Idoso , Adulto Jovem , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/etiologia , Envelhecimento , Nível de Saúde , Perfusão/efeitos adversos
15.
Cell Physiol Biochem ; 58(1): 33-48, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285930

RESUMO

BACKGROUND/AIMS: Nitric oxide (NO) plays a dual role, acting as both an oxidant and a reducer, with various effects depending on its concentration and environment. Acute kidney injury's (AKI) pathogenesis observed in cardiorenal syndrome 3 (CRS 3) involves inflammatory responses and the production of reactive oxygen and nitrogen species. However, the role of NO on the development of CRS 3 is still not completely understood. The study aimed to mimic CRS 3 in vitro and investigate NO signaling and inflammatory molecules. METHODS: Thus, HEK293 cells were submitted to normoxia (NX) or hypoxia (HX) protocols for 16 h followed by 3 h of reoxygenation, treated or not with L-NAME. Conditionate medium by HEK293 was transferred to H9c2 for 24 h. Cellular viability was evaluated by MTT assay, real time PCR was used to analyze gene expression and NO content were evaluated in the intra and extracellular medium by amperimetry. RESULTS: Carbonic anhydrase 9 (CA9) expression increased 2.9-fold after hypoxia. Hypoxia reduced 18 % cell viability in HEK293 that was restored by L-NAME treatment. The sum of nitrite (NO2-) and S-nitrosothiol (S-NO) fractions in HEK293 cells showed a substantial decrease on NO intracellular content (38 %). Both IL-6 and IL-10 decreased in all groups compared to NX cells. Besides TNF-α and Bax/Bcl2 ratio increased in hypoxia (approximately 120-fold and 600-fold, respectively) and L-NAME restored this effect. Regarding H9c2 cells, the S-NO fractions showed a substantial decrease in extracellular content after HX (17%) that was not restored by L-NAME. IL-1ß decreases in cardiac cells treated with conditioned medium from HX/L-NAME. CONCLUSION: In conclusion this study highlights the complex interplay of NO and inflammatory factors in hypoxia-induced renal and cardiac cell responses, with potential implications for cardiorenal syndrome.


Assuntos
Síndrome Cardiorrenal , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Células HEK293 , Hipóxia
16.
Biochem Biophys Res Commun ; 699: 149554, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280308

RESUMO

In the tumor environment, hypoxia promotes tumor progression, such as cancer cell growth, migration and chemoresistance. This study aimed to evaluate the roles of free fatty acid receptors (FFARs) in the regulation of cancer cell functions under hypoxic conditions, using fibrosarcoma HT1080 cells. HT1080 cells expressed FFAR1, FFAR2 and FFAR3 genes, but not FFAR4 gene. FFAR1, FFAR2 and FFAR3 expression levels in HT1080 cells cultured at 1 % O2 were elevated, compared with 21 % O2. The cell growth activities of HT1080 cells cultured at 21 % O2 were inhibited by acetic acid (AA) and propanoic acid (PA), but not 1 % O2. HT1080 cell motility was markedly reduced by culturing at 1 % O2. The cell growth and motility of HT1080 cells were enhanced by FFAR2 knockdown. The cell viability to cisplatin (CDDP) of HT1080 cells cultured at 1 % O2 was increased, compared with 21 % O2. FFAR2 knockdown suppressed the cell viability to CDDP of HT1080 cells. On the other hand, the cell motility and viability to CDDP of HT1080 cells cultured at 21 % O2 were suppressed by TUG-770. When HT1080 cells were cultured at 1 % O2, the cell motility and viability to CDDP were decreased, correlating with FFAR1 expression level. Moreover, FFAR1 knockdown increased the cell viability to CDDP of HT1080 cells cultured at 1 % O2. These results suggest that FFAR-mediated signaling plays an important role in the modulation of cellular functions of HT1080 cells under hypoxic conditions.


Assuntos
Ácidos Graxos não Esterificados , Fibrossarcoma , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Cisplatino/farmacologia , Transdução de Sinais , Fibrossarcoma/metabolismo , Movimento Celular
17.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532411

RESUMO

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Assuntos
Eletroporação , Linfócitos T Citotóxicos , Humanos , Camundongos , Animais , Eletroporação/métodos , Transfecção , Plasmídeos , DNA/genética
18.
Yeast ; 41(1-2): 5-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997284

RESUMO

Auxotrophic strains starving for their cognate nutrient, termed auxotrophic starvation, are characterized by a shorter lifespan, higher glucose wasting phenotype, and inability to accomplish cell cycle arrest when compared to a "natural starvation," where a cell is starving for natural environmental growth-limiting nutrients such as phosphate. Since evidence of this physiological response is limited to only a subset of auxotrophs, we evaluated a panel of auxotrophic mutants to determine whether these responses are characteristic of a broader range of amino acid auxotrophs. Based on the starvation survival kinetics, the panel of strains was grouped into three categories-short-lived strains, strains with survival similar to a prototrophic wild type strain, and long-lived strains. Among the short-lived strains, we observed that the tyrosine, asparagine, threonine, and aspartic acid auxotrophs rapidly decline in viability, with all strains unable to arrest cell cycle progression. The three basic amino acid auxotrophs had a survival similar to a prototrophic strain starving in minimal media. The leucine, tryptophan, methionine, and cysteine auxotrophs displayed the longest lifespan. We also demonstrate how the phenomenon of glucose wasting is limited to only a subset of the tested auxotrophs, namely the asparagine, leucine, and lysine auxotrophs. Furthermore, we observed pleiotropic phenotypes associated with a subgroup of auxotrophs, highlighting the importance of considering unintended phenotypic effects when using auxotrophic strains especially in chronological aging experiments.


Assuntos
Aminoácidos , Asparagina , Aminoácidos/metabolismo , Leucina , Metionina/metabolismo , Glucose/metabolismo , Mutação
19.
J Transl Med ; 22(1): 68, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233920

RESUMO

Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury (IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require additional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfiguration, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in exploring cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modulate cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs and cell lines with potentially beneficial properties have been proposed through various delivery techniques including systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharmacologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatability challenges facing these therapies and future directions in the field of skin flap augmentation.


Assuntos
Traumatismo por Reperfusão , Retalhos Cirúrgicos , Animais , Pele , Complicações Pós-Operatórias , Modelos Animais de Doenças , Necrose/tratamento farmacológico
20.
Appl Environ Microbiol ; 90(3): e0220123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412030

RESUMO

Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE: Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Vacinas , Gravidez , Feminino , Humanos , Animais , Ovinos , Febre Q/epidemiologia , Febre Q/prevenção & controle , Febre Q/veterinária , Estações do Ano , Cabras , Surtos de Doenças/veterinária , Vacinação/veterinária , Aerossóis , Poeira , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA