Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurovirol ; 29(6): 678-691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37851324

RESUMO

Unbiased high-throughput sequencing (HTS) has enabled new insights into the diversity of agents implicated in central nervous system (CNS) infections. The addition of positive selection capture methods to HTS has enhanced the sensitivity while reducing sequencing costs and the complexity of bioinformatic analysis. Here we report the use of virus capture-based sequencing for vertebrate viruses (VirCapSeq-VERT) and bacterial capture sequencing (BacCapSeq) in investigating CNS infections. Thirty-four samples were categorized: (1) patients with definitive CNS infection by routine testing; (2) patients meeting clinically the Brighton criteria (BC) for meningoencephalitis; (3) patients with presumptive infectious etiology highest on the differential. RNA extracts from cerebrospinal fluid (CSF) were used for VirCapSeq-VERT, and DNA extracts were used for BacCapSeq analysis. Among 8 samples from known CNS infections in group 1, VirCapSeq and BacCapSeq confirmed 3 expected diagnoses (42.8%), were negative in 2 (25%), yielded an alternative result in 1 (11.1%), and did not detect 2 expected negative pathogens. The confirmed cases identified HHV-6, HSV-2, and VZV while the negative samples included JCV and HSV-2. In groups 2 and 3, 11/26 samples (42%) were positive for at least one pathogen; however, 27% of the total samples (7/26) were positive for commensal organisms. No microbial nucleic acids were detected in negative control samples. HTS showed limited promise for pathogen identification in presumed CNS infectious diseases in our small sample. Before conducting larger-scale prospective studies to assess the clinical value of this novel technique, clinicians should understand the benefits and limitations of using this modality.


Assuntos
Meningoencefalite , Vírus , Humanos , Estudos Prospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herpesvirus Humano 2/genética
2.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331815

RESUMO

The G12 rotaviruses are an increasingly important cause of severe diarrhoea in infants and young children worldwide. Seven human G12P[6] rotavirus strains were detected in stool samples from children hospitalized with gastroenteritis in Lebanon during a 2011-2013 surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture-based high-throughput viral-sequencing method, and further characterized based on phylogenetic analyses with global RVA and vaccine strains. Based on the complete genomic analysis, all Lebanese G12 strains were found to have Wa-like genetic backbone G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Phylogenetically, these strains fell into two clusters where one of them might have emerged from Southeast Asian strains and the second one seems to have a mixed backbone between North American and Southeast Asian strains. Further analysis of these strains revealed high antigenic variability compared to available vaccine strains. To our knowledge, this is the first report on the complete genome-based characterization of G12P[6] emerging in Lebanon. Additional studies will provide important insights into the evolutionary dynamics of G12 rotaviruses spreading in Asia.


Assuntos
Gastroenterite/virologia , Genoma Viral , Infecções por Rotavirus/virologia , Rotavirus/genética , Rotavirus/isolamento & purificação , Proteínas Virais/genética , Antígenos Virais/química , Antígenos Virais/imunologia , Sudeste Asiático , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Pré-Escolar , Epitopos , Evolução Molecular , Feminino , Glicosilação , Humanos , Lactente , Recém-Nascido , Líbano , Masculino , América do Norte , Filogenia , Rotavirus/química , Rotavirus/imunologia , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia
3.
Res Sq ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502953

RESUMO

Background: Unbiased high-throughput sequencing (HTS) has enabled new insights into the diversity of agents implicated in central nervous system (CNS) infections. The addition of positive selection capture methods to HTS has enhanced the sensitivity while reducing sequencing costs and complexity of bioinformatic analysis. Here we report the use of virus capture based sequencing for vertebrate viruses (VirCapSeq-VERT) and bacterial capture sequencing (BacCapSeq) in investigating CNS infections. Design/Methods: Thirty-four samples were categorized: (1) Patients with definitive CNS infection by routine testing; (2) Patients meeting clinically Brighton Criteria (BC) for meningoencephalitis (3) Patients with presumptive infectious etiology highest on the differential. RNA extracts from cerebrospinal fluid (CSF) were used for VirCapSeq-VERT and DNA extracts were used for BacCapSeq analysis. Results: Among 8 samples from known CNS infections in group 1, VirCapSeq and BacCapSeq confirmed 3 expected diagnoses (42.8%), were negative in 2 (25%), yielded an alternative result in 1 (11.1%), and did not detect 2 expected negative pathogens. The confirmed cases identified HHV-6, HSV-2, and VZV while the negative samples included JCV and HSV-2. In groups 2 and 3,11/26 samples (42%) were positive for at least one pathogen, however 27% of the total samples (7/26) were positive for commensal organisms. No microbial nucleic acids were detected in negative control samples. Conclusions: HTS showed limited promise for pathogen identification in presumed CNS infectious diseases in our small sample. Before conducting larger-scale prospective studies to assess clinical value of this novel technique, clinicians should understand benefits and limitations of using this modality.

4.
Infect Genet Evol ; 78: 104133, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812761

RESUMO

Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.


Assuntos
Infecções por Rotavirus/virologia , Rotavirus/genética , Pré-Escolar , Epitopos/imunologia , Gastroenterite/epidemiologia , Gastroenterite/virologia , Genoma Viral , Genótipo , Humanos , Lactente , Líbano/epidemiologia , Filogenia , Vírus Reordenados/genética , Rotavirus/imunologia , Rotavirus/isolamento & purificação , Infecções por Rotavirus/epidemiologia , Vacinas contra Rotavirus/imunologia
5.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409689

RESUMO

Acute flaccid myelitis (AFM) has caused motor paralysis in >560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in >90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively).IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease.


Assuntos
Anticorpos Antivirais/líquido cefalorraquidiano , Viroses do Sistema Nervoso Central/líquido cefalorraquidiano , Enterovirus Humano D/imunologia , Enterovirus Humano D/isolamento & purificação , Infecções por Enterovirus/líquido cefalorraquidiano , Mielite/líquido cefalorraquidiano , Doenças Neuromusculares/líquido cefalorraquidiano , Adolescente , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Viroses do Sistema Nervoso Central/sangue , Criança , Enterovirus Humano D/genética , Infecções por Enterovirus/sangue , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mielite/sangue , Doenças Neuromusculares/sangue , Análise Serial de Proteínas , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , RNA Viral/genética , Adulto Jovem
6.
mSphere ; 3(4)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135221

RESUMO

High-throughput sequencing can provide insights into epidemiology and medicine through comprehensive surveys of viral genetic sequences in environmental and clinical samples. Here, we characterize the plasma virome of Tanzanian patients with unexplained febrile illness by using two high-throughput sequencing methods: unbiased sequencing and VirCapSeq-VERT (a positive selection system). Sequences from dengue virus 2, West Nile virus, human immunodeficiency virus type 1, human pegivirus, and Epstein-Barr virus were identified in plasma. Both sequencing strategies recovered nearly complete genomes in samples containing multiple viruses. Whereas VirCapSeq-VERT had better sensitivity, unbiased sequencing provided better coverage of genome termini. Together, these data demonstrate the utility of high-throughput sequencing strategies in outbreak investigations.IMPORTANCE Characterization of the viruses found in the blood of febrile patients provides information pertinent to public health and diagnostic medicine. PCR and culture have historically played an important role in clinical microbiology; however, these methods require a targeted approach and may lack the capacity to identify novel or mixed viral infections. High-throughput sequencing can overcome these constraints. As the cost of running multiple samples continues to decrease, the implementation of high-throughput sequencing for diagnostic purposes is becoming more feasible. Here we present a comparative analysis of findings from an investigation of unexplained febrile illness using two strategies: unbiased high-throughput sequencing and VirCapSeq-VERT, a positive selection high-throughput sequencing system.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plasma/virologia , Viroses/diagnóstico , Vírus/genética , Febre/sangue , Febre/virologia , Genoma Viral , Humanos , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA